
IMMANANTS AND FINITE POINT PROCESSES

PERSI DIACONIS AND STEVEN N. EVANS

Abstract. Given a Hermitian, non-negativede�nite kernelK and a character
� of the symmetric group on n letters, de�ne the corresponding immanant
functionK�[x1; : : : ; xn ] :=

P
� �(�)

Qn
i=1 K(xi; x�(i)), where the sum is over

all permutations� of f1; : : : ; ng. When � is the sign character (resp. the trivial
character), then K� is a determinant (resp. permanent). The function K� is
symmetric and non-negative, and, under suitable conditions, is also non-trivial
and integrable with respect to the product measure �
n for a given measure
�. In this case, K� can be normalised to be a symmetric probability density.
The determinantal and permanental cases or this construction correspond to
the fermion and boson point processes which have been studied extensively in
the literature.

The case where K gives rise to an orthogonal projection of L2(�) onto
a �nite{dimensional subspace is studied here in detail. The determinantal
instance of this special case has a substantial literature because of its role in
several problems in mathematical physics, particularly as the distribution of
eigenvalues for various models of random matrices. The representation theory
of the symmetric group is used to compute the normalisation constant and
identify the kth{order marginal densities for 1 � k � n as linear combinations
of analogously de�ned immanantal densities. Connections with inequalities
for immanants, particularly the permanental dominance conjecture of Lieb,
are considered, and asymptotics when the dimension of the subspace goes to
in�nity are presented.

1. Introduction

Gian{Carlo Rota loved symmetric functions and probability. This paper brings
these two subjects together.

Consider a �{�nite measure space (�;A; �) with the measure � di�use. Suppose
that K 2 L2(� 
 �) is a non{negative de�nite, Hermitian kernel on � with �nite
trace. That is,

K(x; y) = �K(y; x);(1.1)

X
i;j

�ziK(xi; xj)zj � 0; z1; : : : ; zn 2 C ; x1; : : :xn 2 �;(1.2)

and Z
K(x; x)�(dx) <1:(1.3)
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2 PERSI DIACONIS AND STEVEN N. EVANS

Given a partition � of n, let �� be the character of the corresponding irreducible
representation of the symmetric group on n letters, Sn (see, for example, Ch. 4 of
[FH91] or Ch. VI of [Sim96]). Given x1; : : : ; xn 2 �, write K�[x1; : : : ; xn] for the
immanant corresponding to �� of the matrix with ijth entry K(xi; xj) (see Ch. VI
of [Lit58] and [Jam87, Jam92]). That is,

K� [x1; : : : ; xn] :=
X
�2Sn

��(�)
nY
i=1

K(xi; x�(i)):

Note that if � 2 Sn, then

K� [x�(1); : : : ; x�(n)] =
X
�2Sn

��(�)
nY
i=1

K(x�(i); x�(�(i)))

=
X
�2Sn

��(�)
nY
i=1

K(xi; x����1 (i))

=
X
�2Sn

��(��1�� )
nY
i=1

K(xi; x�(i))

= K� [x1; : : : ; xn];

because ��(��1�� ) = ��(�) (that is, �� is a class function). In other words, K�

is a symmetric function.
It follows from the Cauchy{Schwarz inequality that�����

nY
i=1

K(xi; x�(i))

����� �
nY
i=1

K(xi; xi)
1

2K(x�(i); x�(i))
1

2 =
nY
i=1

K(xi; xi)(1.4)

for any permutation �, and so (1.3) implies that K� is integrable with respect to
�
n. By a result of Schur [Sch18] (see also [Jam87]),

K�[x1; : : : ; xn] � ��(1) det(K(xi; xj)) � 0:(1.5)

Therefore, when K� > 0 on a set of positive �
n{measure the function K� can
be renormalised to be the nth Janossy measure density (with respect to �
n) of
a �nite simple point process on � with exactly n points. Informally, for some
constant cK;� the quantity cK;�K

�[x1; : : : ; xn]�(dx1) : : : �(dxn) is the probability
that a realisation of the point process will result in one point located in each of the
the in�nitesimal subsets dxi and no points elsewhere. In particular,Z

� � �
Z

cK;�K
�[x1; : : : ; xn]�(dx1) : : : �(dxn) = n!:

When � = (1n) (that is, the partition consisting of n parts which are all 1) we
have that ��(�) = sgn (�), the sign of the permutation �, and K�[x1; : : : ; xn] =
det(K(xi; xj)). When � = (n) (that is, the partition consisting of a single part n)
we have that �� � 1 and K�[x1; : : : ; xn] = per (K(xi; xj)), the permanent of the
matrix (K(xi; xj)). The corresponding point processes are discussed in [Mac75],
where they called, respectively, fermion and boson processes on account of their
origins in quantummechanics (see also [DVJ88]). The physical terminology fermion
is suggestive of the Pauli exclusion principle, and it is indeed the case that such
processes exhibit \antibunching" e�ects which are absent in the boson case. A
recent survey (with an extensive bibliography) of the fermion case and its role in
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quantum mechanics, statistical mechanics, random matrix theory, representation
theory, and ergodic theory may be found in [Sos00]. The point processes for general
characters, which don't appear to have been mentioned previously in the literature,
can be thought of as \interpolating" between the fermion and boson cases.

The point processes of eigenvalues for various models of randommatrices turn out
to be fermion processes (see [Meh91]). In these examples, the kernel K corresponds
to an orthogonal projection PS onto a �nite{dimensional subspace S of L2(�). That
is, PSf(x) =

R
K(x; y)f(y)�(dy). As a projection, the function K has the extra

properties: Z
K(x; y)K(y; z)�(dy) = K(x; z)(1.6)

and Z
K(x; x)�(dx) = dimS =: DS :(1.7)

Moreover, if f'i : 1 � i � dimSg is an orthonormal basis for S, then

K(x; y) =
X
i

'i(x) �'i(y):(1.8)

For example, consider a uniformly chosen random N�N unitary matrix (that is,
a randommatrix distributed according to Haar measure on the unitary group). The
point process on the unit circle formed by the N eigenvalues of such a matrix has
N th Janossy measure density against Lebesgue measure given by det(SN (�j � �k)),
where

SN (�) :=
1

2�

sin
�
N�
2

�
sin
�
�
2

�
= e�i

N�1

2
�
�
1 + ei� + ei2� + � � �+ ei(N�1)�

�
:

Here, of course, we are identifying the unit circle with the interval [0; 2�[ and the
Lebesgue measure has total mass 2�.

From know on we will consider special case of projection kernels and write KS

for K to stress the dependence on the subspace S. To simplify notation we will
write cS;� for the normalisation constant cKS;� .

It is apparent from the random matrix examples in [Meh91] (see, particularly,
Theorem 5.2.1) that fermion processes corresponding to projection kernels share the
useful property that it is possible to evaluate the necessary integrals to compute
the normalisation constant cS;(1n) explicitly and to �nd the corresponding k

th{order
factorial moment measure densities

m
S;(1n)
[k] (x1; : : : ; xn) :=

Z
� � �
Z

1

(n� k)!
cS;�K

(1n)
S [x1; : : : ; xn]�(dxk+1) : : : �(dxn)

for 1 � k < n. The quantitym
S;(1n)
[k] (x1; : : : ; xn)�(dx1) : : :�(dxk) is the probability

that a realisation of the fermion process will result in one point located in each of
the the in�nitesimal subsets dxi (with no constraints on the remaining n�k points).

Alternatively,
�
n
k

��1
m
S;(1n)
[k]

is kth Janossy measure of the point process obtained

by picking k points at random from the original n points laid down by the fermion
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process. In the physics terminology used in the random matrix literature, mS;(1n)
[k]

is the k{point correlation function for the fermion process.
It is our aimhere to use the representation theory ofSn to show that analogues of

explicit integration formulae for determinants of projection kernels hold for general
immanants. Also, we will relate such integration formulae to the extensive literature
on inequalities for immanants which has grown out of the permanental dominance
conjecture of Lieb [Lie66] (see also [Mer87, Jam87, Jam92, Pat94, Pat98, Pat99] for
surveys and extensive bibliographies). Finally, we consider the asymptotics of the
point process when the dimension DS goes to in�nity.

We end this section with some further comments on the immanants literature
and its relation to our work.

Computationally, determinants are known to be \easy" to evaluate, whereas per-
manents are \hard" (see the seminal paper [Val79] and the recent review [Cla96]).
However, there are good randomised algorithms for approximating permanents (see,
for example, [Bar97, Bar99]). Upper bounds on the computational complexity of
general immanants are discussed in [Har85, Bar90]. An e�cient algorithm for evalu-
ating the immanant when the character ofSn corresponds to the partition (2; 1n�2)
is presented in [GM84], where the use of immanants in constructing graph invariants
is also discussed.

Lastly, we note that if the kernel K is no longer Hermitian but is such that
the matrix (K(xi; xj)) is totally positive for all x1; : : : ; xn (that is, all minors are
non{negative), then an analogue of Schur's inequality due to Stembridge [Ste91]
holds and so it is again possible under suitable integrability conditions to construct
for an arbitrary partition � a �nite point process with nth Janossy measure density
K�.

2. Integration formulae

As usual, we associate partitions of n with Young frames using the convention
of, say, [FH91] or [Sim96]. That is, the Young frame associated with a partition
� = (�1; : : : ; �k) with �1 � � � � � �k � 1 consists of k \left{justi�ed" rows of boxes,
where the top row has �1 boxes, the second row has �2 boxes, and so on.

Thinking of two partitions � of n�1 and � of n as Young frames, say that �/� if
� is obtained from � by the removal of a boundary box (that is, a box at the right{
hand end of a row of �). Note that the box to be removed is also at the bottom of
a column of �. In this case, write M%(�; �) for the length of the hook in � that
contains the removed box and the rightmost box in the top row of �. Similarly,
write M.(�; �) for the length of the hook in � that contains the removed box and
the leftmost box in the bottom row of �. That is, if we write � = (�1; : : : ; �`)
and � = (�1; : : : ; �`) with �1 � �2 � � � � � �` > 0 and �h = �h for all indices h
except for one index k for which �k = �k � 1, then M%(�; �) = k + �1 � �k and
M.(�; �) = (` � k) + �k.

Note that if �0 and �0 denote the conjugates of � and �, then � / � if and only
if �0 / �0, in which case M%(�; �) = M.(�0; �0) and M.(�; �) = M%(�0; �0).
Note also that M%(�; �) (resp. M.(�; �)) is the length of the skew hook in � that
contains the removed box and the rightmost box in the top row (resp. leftmost box
in the bottom row) of � (recall that a skew hook is a connected chain of boundary
boxes).
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Theorem 2.1. Let � = (�1; �2; : : : ; �k) be a partition of n � 2 with �1 � �2 �
� � � � �k > 0.

(a) In the notation above,

Z
�

K�
S [x1; : : : ; xn]�(dxn) =

X
�/�

�
DS �M%(�; �) +M.(�; �)

�
K�
S [x1; : : : ; xn�1]:

(b) Write `1 = �1 + k � 1, `2 = �2 + k � 2, : : : , `k = �k. Then

1

n!

Z
�n

K�
S [x1; : : : ; xn]�


n(dx)

is the coe�cient of uny`11 y`22 : : : y`kk in

Y
1�a<b�k

(ya � yb) �
kY

c=1

(1� uyc)
�DS ;

which is

(�1)n
X
�

( sgn�)
kY

c=1

� �DS

`c � �(k + 1� c) + 1

�

=
X
�

( sgn�)
kY

c=1

�
DS + `c � �(k + 1� c)

`c � �(k + 1� c) + 1

�
;

where the sum is over all permutations � 2 Sk such that �(k + 1� c) � `c + 1
for 1 � c � k.

Proof. (a) Identify Sn�1 with the subgroup of Sn that �xes n. For 1 � k � n� 1
write (kn) for the element of Sn which transposes k and n and leaves all other
elements of f1; : : : ; ng �xed. If � 2 Sn�1, then the product � (kn) is a permutation
which has the e�ect k! n! � (k) and (� (kn))(i) = � (i) for i =2 fk; ng. We have

Z
K�
S [x1; : : : ; xn]�(dxn)

=
X

�2Sn�1

��(� )
n�1Y
i=1

KS (xi; x�(i))

Z
KS (xn; xn)�(dxn)

+
X

�2Sn�1

n�1X
k=1

��(� (kn))
n�1Y

i=1;i6=k

KS(xi; x�(i))

Z
KS(xk; xn)KS(xn; x�(k))�(dxn):

(2.1)

Now �� restricted to Sn�1 is just the character of the restricted representation
and so, by the usual branching rule (see, for example Exercise 4.43 of [FH91]),

��(� ) =
X
�/�

��(� ):

By (1.7) the �rst sum in the right side of (2.1) is thusX
�/�

DSK
�
S [x1; : : : ; xn�1]:(2.2)



6 PERSI DIACONIS AND STEVEN N. EVANS

Turning to the second sum on the right side of (2.1), note from (1.6) that

n�1Y
i=1;i6=k

KS(xi; x�(i))

Z
KS(xk; xn)KS (xn; x�(k))�(dxn) =

n�1Y
i=1

KS(xi; x�(i)):

Note also that because �� is a class function on Sn, the function � 7!Pn�1
k=1 �

�(� (kn)) is a class function on Sn�1. Therefore, there exist constants C�;�

such that
Pn�1

k=1 �
�(� (kn)) =

P
�C�;��

�(� ), where the sum on the right is over all
partitions � of n� 1. Thus

X
�2Sn�1

n�1X
k=1

��(� (kn))
n�1Y

i=1;i6=k

KS(xi; x�(i))

Z
KS(xk; xn)KS (xn; x�(k))�(dxn)

=
X
�

C�;�K
�
S [x1; : : : ; xn�1]:

By orthogonality of characters

C�;� =
1

(n � 1)!

X
�2Sn�1

n�1X
k=1

��(� (kn))��(��1):

Suppose �rst of all that �/�. Fix for the moment � 2 Sn�1 and 1 � k � n� 1.
The cycle decomposition of � (kn) consists of a cycle � of lengthm, say, that contains
the sequence � � � ! k ! n ! � (k) ! : : : and a collection of cycles that we denote
by �. The cycle decomposition of � consists of the collection � and a cycle � of
lengthm�1 that agrees with � except that the sequence � � � ! k ! n! � (k)! : : :
is replaced by the sequence � � � ! k! � (k)! : : : .

By the Murnaghan{Nakayama rule (see, for example, Problem 4.45 in ([FH91])),
we have

��(� (kn)) =
X
�

(�1)r(�;�)��(�);

where the sum is over all Young frames � of size n�m obtained by removing a skew
hook of length m from � and r(�; �) is the number of vertical steps in the skew hook
(that is, one less than the number of rows in the skew hook). Here, of course, we
are viewing the collection of cycles � as the cycle decomposition of a permutation
on the n�m elements of f1; : : : ; ng not contained in the cycle � (equivalently, as
the cycle decomposition of a permutation of the n �m elements of f1; : : : ; n� 1g
not contained in the cycle �), and hence as an element of Sn�m. Similarly,

��(��1) =
X



(�1)r(
;�)�
(��1);

where the sum is over all Young frames 
 of size (n�1)� (m�1) = n�m obtained
by removing a skew hook of length m � 1 from � and r(
; �) has the obvious
meaning.

Fix for the moment 
 and � such that 
 is obtained by removing a skew hook of
length m� 1 from � and � is obtained by removing a skew hook of length m from
�. By the orthogonality of characters, if � is, as above, a �xed (m�1){cycle drawn



IMMANANTS AND FINITE POINT PROCESSES 7

from f1; : : : ; n� 1g which contains k, then

X
�

��(�)�
 (��1) =

(
(n �m)!; if 
 = �;

0; otherwise;

where the sum is over all permutations � of the n�m letters not contained in the
(m� 1){cycle �. Now 
 = � if and only if the skew hook of length m removed from
� has the box that needs to be removed from � to obtain � as either its \northeast-
most" box, in which case (�1)r(
;�) = (�1)r(�;�), or its \southwest{most" box, in
which case (�1)r(
;�) = �(�1)r(�;�) .

Therefore X
�

X
�

X



(�1)r(�;�)(�1)r(
;�)��(�)�
 (��1)

= (n�m)!(I.m (�; �)� I%m (�; �));

where I.m (�; �) = 1 if the box that needs to be removed from � to obtain � is
the \northeast-most" box in a skew hook of length m and I.m (�; �) = 0 otherwise,
and I%m (�; �) = 1 if the box that needs to be removed from � to obtain � is the
\southwest-most" box in a skew hook of length m and I%m (�; �) = 0 otherwise.

For each 1 � k � n� 1 the number of (m� 1){cycles drawn from f1; : : : ; n� 1g
which contain k is (n� 2)!=(n�m)! . Therefore,

C�;� =
1

(n� 1)!
(n� 1)

n�1X
m=2

(n� 2)!

(n�m)!
(n�m)!(I.m (�; �)� I%m (�; �))

= M.(�; �)�M%(�; �)

A similar argument shows that C�;� = 0 if �/� does not hold, and this completes
the proof of part (a).

(b) Given � 2 Sn, write #(�) for the number of cycles in �. It follows from (1.6)
and (1.7) that Z

�n

nY
i=1

KS (xi; x�(i))�

n(dx) = D

#(�)
S ;

and so
1

n!

Z
�n

K�
S [x1; : : : ; xn]�


n(dx) =
1

n!

X
�2Sn

��(�)D
#(�)
S :(2.3)

Set

�(y) :=
Y

1�a<b�k

(ya � yb)

and

Pj(y) := yj1 + yj2 + � � �+ yjk; 1 � j � k:

By the Frobenius character formula (see, for example, x4.1 of [FH91]), if � has i1
1{cycles, i2 2{cycles, : : : , in n{cycles, then ��(�) is the coe�cient of y`11 y`22 : : : y`kk
in

�(y) �
nY

j=1

Pj(y)
ij ;
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Note that the number of elements of Sn with cycle structure (i1; i2; : : : ; in) is

n!

1i1i1!2i2i2! : : :ninin!

(see equation (4.30) of [FH91]). Moreover,

X
i1;:::in

nY
j=1

t
ij
j

1

i1!i2! : : : in!

(where the sum is over all i1; i2; : : : ; in such that
P

j jij = n) is the coe�cient of
un in

exp

0
@ nX

j=1

tju
j

1
A :

Therefore, the right{hand side of (2.3) is the coe�cient of uny`11 y`22 : : : y`kk in

�(y) � exp
0
@ nX

j=1

DSPj(y)

j
uj

1
A = �(y) � exp

0
@ nX

j=1

DS

j
uj

 
kX

c=1

yjc

!1A

= �(y) � exp
0
@ kX

c=1

DS

nX
j=1

(uyc)j

j

1
A ;

which is in turn the coe�cient of uny`11 y`22 : : : y`kk in

�(y) �
kY

c=1

exp

0
@DS

1X
j=1

(uyc)
j

j

1
A = �(y) �

kY
c=1

exp (�DS log(1� uyc))

= �(y) �
kY

c=1

(1� uyc)
�DS :

The proof of part (b) is completed by noting that �(y) is the Vandermonde
determinant

det

0
B@
1 yk � � � yk�1k
...

...
...

1 y1 � � � yk�11

1
CA

and that
Pk

c=1(`c � �(k + 1� c) + 1) = n.

Combining part (b) of Theorem 2.1 with repeated applications of part (a) gives
the following result.

Corollary 2.2. Suppose that � = (�1; : : : ; �k) is a partition of n as in Theorem
2.1. Then

1

n!

X
(1)=�1/���/�n=�

DS

n�1Y
i=1

�
DS �M%(�i; �i+1) +M.(�i; �i+1)

�

=
X
�

( sgn�)
kY

c=1

�
DS + `c � �(k + 1� c)

`c � �(k + 1� c) + 1

�
;



IMMANANTS AND FINITE POINT PROCESSES 9

where `1; : : : ; `k are as in Theorem 2.1 and the sum on the right{hand side is over
all permutations � 2 Sk such that �(k + 1� c) � `c + 1 for 1 � c � k.

Example 2.3. Suppose that � is a hook partition of the form (m; 1n�m) for 1 �
m � n (that is, the �rst row of � thought of a Young frame has m boxes and the
remaining n�m rows each have one box). ThenZ

�

K�
S [x1; : : : ; xn]�(dxn) = (DS � 1 + n)K((m�1);1n�m)

S [x1; : : : ; xn�1]

+ (DS � n+ 1)K
(m;1n�m�1 )
S [x1; : : : ; xn�1]

if 1 < m < n, with the obvious modi�cations if m = 1 or m = n. Continuing in
this way gives

Z
� � �
Z

K�
S [x1; : : : ; xn]�(dxh+1) : : :�(dxn)

=
X

(DS + "a;bn�1(n� 1))(DS + "a;bn�2(n� 2)) : : : (DS + "a;bh h)K
(a;1b)
S [x1; : : : ; xh];

where the sum is over all 1 � a � m and 0 � b � n � m with a + b = h and
all "a;bn�1; "

a;b
n�2; : : : ; "

a;b
h 2 f�1g such that (m � a) of these terms are +1 and the

remaining (n�m)� b are �1. Equivalently, the term on the right{hand side is the
coe�cient of vm�a in

nY
g=h+1

(DS � (g � 1) + v(DS + (g � 1))) :

In particular, considering the case h = 1 and then doing one more integration
using (1.7) gives that

1

n!

X
(DS + "1;0n�1(n� 1))(DS + "1;0n�2(n � 2)) : : : (DS + "1;01 1)DS

=
X
�

( sgn �)

�
DS + n� �(n �m + 1)

n � �(n �m + 1) + 1

��
DS + n�m � �(n�m)

n �m � �(n �m) + 1

�

�
�
DS + n�m� 1� �(n �m � 1)

n�m � 1� �(n �m � 1) + 1

�
: : :

�
DS + 1� �(1)

1� �(1) + 1

�
;

where the sum on the left{hand side is over all "1;0n�1; "
1;0
n�2; : : : ; "

1;0
h 2 f�1g such

that (m�1) of these terms are +1 and the remaining (n�m) are �1, and the sum
on the right{hand side is over all permutations � 2 Sn�m+1 such that �(c) � c+1
for 1 � c � n � m + 1. For example, when m = 1 (so that the immanant is a
determinant) this equality becomes�

DS

n

�
=
X
�

( sgn�)

�
DS + n� �(n)

n + 1� �(n)

��
DS + n� 1� �(n � 1)

n� �(n� 1)

�

�
�
DS + n� 2� �(n � 2)

n� 1� �(n� 2)

�
: : :

�
DS + 1� �(1)

2� �(1)

�
;

where the sum on the right{hand side is over all permutations � 2 Sn such that
�(c) � c+ 1 for 1 � c � n.
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3. Connections with immanant inequalities

The permanental dominance conjecture of Lieb [Lie66] asserts that K� �
��(e)K(n) for any K satisfying (1.1) and (1.2), where e is the identity permu-

tation. A consequence of this conjecture would therefore be that K�
S � ��(e)K

(n)
S

and hence, in particular,Z
� � �
Z

K�
S [x1; : : : ; xn]�(dx1) : : :�(dxn)

� ��(e)

Z
� � �
Z

K
(n)
S [x1; : : : ; xn]�(dx1) : : :�(dxn):

(3.1)

By (2.3) the left{hand side of the (3.1) isX
�2Sn

��(�)D
#(�)
S ;

whereas the right{hand side is

��(e)
X
�2Sn

D
#(�)
S ;

and (3.1) does indeed hold because j��(�)j � ��(e) for all � 2 Sn.
A remarkable inequality of Pate [Pat92] gives a comparison of two immanants

in which one partition is obtained from another by moving a corner box of the
corresponding Young frame to the bottom of the frame. More precisely, suppose
that � = (�1; �2; : : : ; �k) is a partition of n such that �1 > 1. Suppose that 1 � h �
k is such that �h > max(�h+1; 1). Let �

0 denote the partition (�1; : : : ; �h�1; �h �
1; �h+1; : : : ; �k; 1). Then

K�=��(e) � K�0=��
0

(e):(3.2)

The special case of this result for hook partitions was proved in [Hey88] and implies
the validity of the permanental dominance conjecture for such partitions.

Applying (3.2) to K = KS and integrating, we �nd from (2.3) that

X
�2Sn

��(�)

��(e)
d#(�) �

X
�2Sn

��
0

(�)

��0(e)
d#(�)

for all positive integers d.
Let `1 > `2 > : : : > `k correspond to � as in Theorem 2.1, and de�ne `01 > `02 >

: : : > `0k > `0k+1 = 1 analogously for �0 so that `0h = `h and `0i = `i+1 for 1 � i � k,
i 6= h. Recall that

��(e) =
n!

`1! : : : `k!

Y
i<j

(`i � `j);

with an analogous formula for ��
0

(e) (see (4.11) of [FH91]). It follows from Pate's
inequality and Theorem 2.1 that for all positive integers d,

`1! : : : `k!Q
i<j(`i � `j)

X
�

( sgn�)
kY

c=1

�
d+ `c � �(k + 1� c)

`c � �(k + 1� c) + 1

�

� `01! : : : `
0
k!Q

i<j(`
0
i � `0j)

X
�0

( sgn�0)
k+1Y
c0=1

�
d+ `0c0 � �0(k + 2� c0)

`0c0 � �0(k + 2� c0) + 1

�
;
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where the sum on the left is over all permutations � 2 Sk such that �(k+ 1� c) �
`c + 1 for 1 � c � k, and the sum on the right is over all permutations �0 2 Sk+1

such that �0(k + 2� c0) � `0c0 + 1 for 1 � c0 � k + 1.

4. Point process asymptotics

Write �S;� for the point process with nth Janossy measure K�
S , where � is a

partition of n.

Proposition 4.1. Suppose that � is �nite and fSmgm2Nis a sequence of �nite{
dimensional subspaces of L2(�) with the property that

lim
m!1

Z ��D�1SmKSm (x; x)� �(x)
�� �(dx) = 0

for some probability density �. Then for any partition � of n the point processes
�Sm;� converge in total variation as m!1 to the point process obtained by laying
down n independent draws from the distribution with density �.

Proof. Assume without loss of generality that � is a probability measure. For ease
of notation, write Km for KSm , Dm for DSm , and cm;� for cSm;� .

Note from (2.3) that

lim
m!1

cm;�

1

n!
��(e)Dn

m = 1;(4.1)

where e 2 Sn is the identity permutation (which is the only permutation with n
cycles { all other permutations have fewer cycles).

It follows from (4.1) and the assumption of the proposition that

lim
m!1

Z
� � �
Z �����cm;��

�(e)
nY
i=1

Km(xi; xi) � n!
nY
i=1

�(xi)

����� �(dx1) : : :�(dxn) = 0:

To complete the proof, it su�ces by (4.1) to show for any permutation � 6= e
that D�nm

Qn
i=1Km(xi; x�(i)) converges to 0 in L1(�) as m!1.

By (1.1), (1.6), and (1.7),ZZ ��D�1m Km(x; y)
��2 �(dx)�(dy) = D�2m

ZZ
Km(x; y)Km(y; x)�(dx)�(dy)

= D�2m

Z
Km(x; x)�(dx)

= D�1m ;

and, in particular, D�1m Km converges to 0 in �
2{measure as m!1.

Therefore, for k � 2, D�km
Qk

i=1Km(xi; xi+1) (with the indices de�ned modulo
k so that k + 1 = 1) converges to 0 in �
2{measure as m !1. Moreover, by the
Cauchy{Schwarz inequality (cf. (1.4)),

D�km

�����
kY
i=1

Km(xi; xi+1)

����� � D�km

kY
i=1

Km(xi; xi);
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and, by assumption, the right{hand side converges in L1(�) as m!1. Hence, by
dominated convergence,

lim
m!1

D�km

Z
� � �
Z �����

kY
i=1

Km(xi; xi+1)

����� �(dx1) : : :�(dxk) = 0:

For � 6= e, factor the multiple integralZ
� � �
Z �����D�nm

nY
i=1

Km(xi; x�(i))

����� �(dx1) : : : �(dxn)
into a product of multiple integrals, with one term for each cycle of �. It is clear
from the above that the terms corresponding to k{cycles with k � 2 (of which there
is at least one) converge to 0, whereas the terms corresponding to 1{cycles converge
to 1 by assumption.

Example 4.2. Suppose that � is a compact group with Haar measure � (nor-
malised to be a probability measures). Consider any in�nite sequence fU (k)gk2N
of (inequivalent) irreducible unitary representations of �. By the Peter{Weyl the-
orem, each U (k) is �nite{dimensional with dimension we will denote by dk. Let

U
(k)
ij (x), 1 � i; j � dk, x 2 �, denote the entries in a matrix realisation of U (k).

The functions fpdkU (k)
ij : 1 � i; j;� dk; k 2 Ng are orthonormal in L2(�). Let Sm

denote the space spanned by fpdkU (k)
ij : 1 � i; j;� dk; 1 � k � mg. Note that

KSm (x; x) =
mX
k=1

dk

dkX
i=1

dkX
j=1

���U (k)
ij (x)

���2

=
mX
k=1

dk trace
h�
U (k)(x)

�� �
(U (k)(x)

�i

=
mX
k=1

d2k

= DSm ;

and so the conditions of Proposition 4.1 hold with � � 1.
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