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Since € can be arbitrarily small, the above inequality implies that lim,, ., >.7(n;/N)? = 0.

a

Proor orF COROLLARY 1: By A 5 and A6, (4.9) is a direct consequence of (4.6), the
definition of dth order kernels and the Taylor expansions of 3,(t — hu), p;,(t — hu) and
fr(t — hu) at point t. O

Proor oF COROLLARY 2: By (4.10), Al and A2, there exists a constant b > 0 so that
| My, (00 (O E (X, Xign iy = tiyr = D] < b

for all t € R. On the other hand, (4.11) implies that

ArﬂﬁéE:b:bN‘Q(fjﬁ-N)gbAN—l—bN—lzo(N—%fQ
=1

=1 j#j'

when n is sufficiently large. Thus (4.12) follows from (4.10). O

Proor or CoRrROLLARY 3: Denote by A(h,t) the sum of the first two terms of the
right hand side of (4.12). Then A(h,t) is minimized by k., which is the unique solution of
JA(h,t)/0h = 0. 1t is easy to verify that (4.14) is obtained by substituting h,,; into (4.12).
|

Acknowledgments. This research was partially supported by grants from the National
Institutes of Health, A126499, A133874 and HD30042, and the Office of Nutrition, Bureau for
Science and Technology, United States Agency for International Development Cooperative
Agreement DAN-0045-A-5094-00. The authors are grateful to Professor Richard D. Semba
for providing us his valuable data on children’s growth and vitamin A, to Professor Shih-
Ping Han for insightful discussions and comments on the properties of splines, and to Mr.

Chin-Tsang Chiang for many numerical computations used in this paper.

REFERENCES

ArrmaN, N. S. (1990). Kernel smoothing of data with correlated errors. J. Amer. Statist.
Assoc. 85, 749-759.

Buisa, A., Hastig, T. J. and TiBsHRrIANI, R. J. (1989). Linear smoothers and additive
models. Ann. Statist. 17, 453-555.

32



(6.4) E(&n(t)lti; = s) = Y (B:(t) = Br(1)) pur(9),

(6.5) ER(t) = N7'n” 1iZ/E (Eii(D))ti; = s) K (

=1 7=1

(Bo(t), ..., Br(t)T.

Thus, (4.6) follows from (6.3), (6.4) and (6.5).

For the derivation of (4.7), we first notice that

8) fr(s)ds

E (&1, (D&, (Dt = 5)
k
[Z—: Xijiy Xijr (Br(tiz) — Bi( ] [Z Xiji, Xijr (Br(ti) — Bi(t ))] |ti; = 8}

r=0

(6.6) +FE [Xijlez’ﬂQG?(tijWij = 5]
2
>

(ﬁﬁ(s) = B (t)) (ﬁT2(8) = B, (t)) E [Xiﬂ1Xi]l2X2]T1XZ]T2 |tij = 8]

71,72 =0

—|—02(8) Plily (8)

Thus, (4.7) follows directly from (6.2), (6.4), (6.5) and (6.6).

By (4.7) and assumptions A2 through A6, it is easy to see that In(¢) and IIIx(¢) converge
to zero as n — oo. Thus, by the definition of IIx (%) and the fact that Zi,b:o My, (8)piy, () >
0, it suffices to show the last assertion of the theorem by proving that

. -2 2 _ _ : ; =
lim N (Z ny — N ) 0 ifandonlyif  lim nax (n;/N)=0.

It is easy to see that lim, .o maxj<i<,(ni/N) # 0 implies that lim, .. S (ni/N)? #
0. It suffices to show that lim, .., max;<;<,(n;/N) = 0 implies lim, ., S (ni/N)? =0.

Assume now that lim,_.o, maxj<;<,(n;/N) = 0. Then, for any € > 0, max;<ij<,(n;/N) <

€/2 for sufficiently large n. Let 1 = kg < ky < - -+ < k,,, = n,, be positive integers such that

ky
% _;% e forl=1,...,m—1, and kZ: —<€
= 7 m—1
Then, forall I = 1,..., ,ZZ - 1(nZ/N)2 < €. By N =" n;, we have m < 2/¢, and

consequently,
n 2 2
; 2
E (ﬂ) < Al 2e.
— \ N €
=1
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where

” o (T —tis
A = N7=?h~ QZZ 71711712 7]77617762)(15)}&2( h ])

=1 7=1
AT
AQ — 2h 22 Z 7]711712 7]/77’177’2)(15) K ( ]) K ( : )
1 h "
=1 j#5
(L=t (L ey
AS = 2h 222 7]711712 7j/7717T2)(t) K ( h ]) K (TJ) ‘
i g,

By (6.1), A4 through A6 and the change of variables, it is easy to verify that
EA = N"'el) (1) /A ydu+o (NTHhTY).
Similarly, (6.1), A5 and the Cauchy-Schwarz inequality imply that, for any j # j', uy € R
and uy € R,
E (a(m‘,ll,12)(15)@(2',]‘/,7«1,7«2)(75)|tij =t—huy,t =1 - huz) = P11, lar1r2) (1)

as h — 0. Thus

EAZ = N_2 (Zn? - N) f%(t)p(h,b,ﬁ,?“z)(t) to (N_2 (Zn? - N)) .
=1 =1

Finally, direct calculation shows that

EAs = (1_ = 1” ) </¢1112 — hu) fr(t — hu) K (u )du)
X ( / 600 (1 — hu) fr(t — hu) K (u) du)

The proof of the lemma is completed. O

Proor oF THEOREM 1: Following (4.3) and (4.4), it suffices to study the asymptotic
properties of ER(t) and E [}A{l(t)fb(t)] forall l,7=0,...,k.

Select a(; ;i 1,)(t) of Lemma 1 to be

k

Aigin i) (1) = it (1) = D [Xijt Xijs (B(tig) — Bs(0)] + Xy ei(tiy).
5=0
Then, it can be verified by direct computation that

(6.3) Ri(t)y = N~'n! iigm(t) K (t _ht”) . 1=0,...,k

=1 7=1
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6 Proofs

Before proving Theorem 1 and the corollaries of Section 4, we first state a useful technical

lemma.

Lemma 1. Let ag j1,.1,)(t) be a function of (Xijy, Xiji,,tij, 1, €) such that, for some

positive constants a and b.

¢ b
. |2 (a0 (DIt = 5)| < als = 1.
Suppose that t;;, + = 1,...,n and j = 1,...,n;, are independent random variables with

density fr, assumptions A1, A4, A5 and A6 are satisfied, and

- t—ti
Zhlz - lh IZZ ,],ll,lg ( h ]) .

=1 7=1

Then, for all 1y, 1y, 11,72 = 0, ... F,
E(Zi, (1) 20 n)(1) = (1 i= 1" ) (/@1,2 b fr(t — hu) K (u )du)
(6.2) </¢ — ) fr(t — hu)K (u )du)
*(iﬁ—N)ﬁwmm%m@

FNTIRTO O [ K ) d

to (N7 4 ( (inf—zv))

1
Oh(s) = K {“(i,j,ll,IQ)(t)ltij = 8] :
2
¢Ell)vl2v7°177°2)(8) =k [a(i,j,lhb)(t) a(¢7]‘7717T2)(t)|t2']‘ = 8] )
p(l1,lz,T1,T2)(5) = ELHOE [ai7]‘7[17l2(t) i 711712( )|t” = s, tij’ =s+ A] .0

where

Proor: By straightforward decomposition, we have

Zl1l2(t)ZT1T2 (t) =A+ A+ A3
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Several global risks such as the average mean squared errors (AMSE) and the average
predictive squared errors (APSE) have been given in Section 2.5. One common feature
about AMSE and APSE as defined in (2.21), (2.23) and (2.24) is that they are all defined
conditioning on the design points ;;.

It might be more reasonable to measure the average performance of the estimates on

the entire interval according to some weight functions 7(-). Some possible measures are

(5.4) MISE () = /MSE (5u(n) w(tyde,  1=0,....k,

and

(5.5) MISEw () = /MSEW (B(1)) =(r) dt

where MSE(ﬁl(t)) is defined in (2.20) and MSEy (ﬁ(t)) is defined in (4.1). To measure
the global predictive error of ﬁ(t) for a given covariate @ = (zo,...,2;)’ which may be

functions of ¢, a natural quantity is the mean integrated predictive squared error (MIPSE)
(5.6) MIPSE (275) = /MSE («75(1)) =(1) dt
where MSE(wTﬁ(t)) is defined in (2.22).

5.5 Inference

We have used bootstrap standard errors to assess variability, but we have not addressed some
other important inferential issues. Various types of confidence regions might be desired: for
example, intervals for components or linear combinations of components of 3(t) for fixed
t and simultaneous confidence bands for all ¢ in an interval. Various hypothesis testing
problems are of interest as well: for example, a test that a certain component of §(-) is
identically zero or constant. The bootstrap provides a natural approach to such problems,

but the theoretical and practical aspects would require substantial development.

5.6 Data Analysis

There is an extensive methodology of data analysis in linear models, parallels of which
should be developed for the current context. For example, it is desirable to identify influ-
ential cases. Residuals for longitudinal data are not only individual points but the curves
corresponding to individual subjects. Rice and Silverman (1991) use principal components
to characterize temporal variation and individual residual curves, but their methods are not

directly applicable to the current context.
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absence of a certain condition, for example a disease, given time ¢ and a set of covariates,
Y () is a binary variable, i.e.

V(1) = 1 if the disease is present at time t,
0 otherwise.

Furthermore, conditioning on X (¢), Y (¢) has a Bernoulli distribution with

ult) = PY (1) = 11X(0).
Let Link(-) be a given link function. Generalized time-varying coefficient models are defined
by

(5.3) Link(u(1)) = X7(1) 5(2).

Popular choices of link functions including the logit, the complementary log-log, etc. are
discussed, for example, in McCullagh and Nelder (1989).

When the coefficients 3 = (8o, ...,3)" are independent of ¢, (5.3) reduces to the well-
known generalized linear models. Statistical inferences and estimation methods for this
class of models with longitudinal data can be found in Diggle, Liang and Zeger (1994). A
penalized likelihood approach (Green and Silverman (1994)) could be taken to allow for

time varying coefficients with longitudinal data.

5.3 Estimation at the Boundary

The asymptotic properties developed in Section 4 were built on a crucial assumption of
t being an interior point of the observation interval. In practice, it is also important to
estimate the §(t) values when ¢ is at the boundary. For the example of Section 3, a mean-
ingful goal of model (1.2) is to use the covariates such as the maternal vitamin A level and
infant’s gender and HIV status to predict infant’s weight at birth. It is well known that
kernel estimates need special boundary modifications in order to avoid severe bias at the
boundary—see, for example, Gasser and Miiller (1979), Rice (1984), and Miiller (1984).
Smoothing splines, too, suffer from increased bias near the boundary because they are con-
strained to have vanishing second derivatives there (Rice and Rosenblatt (1983)). Locally
weighted polynomial smoothings typically have increased variance near the boundary. We
have not investigated the boundary behavior of our smoothing procedures for longitudinal

data, but we would expect similar phenomena.

5.4 Global Measures of Errors

Our analysis in Section 4 focused on the asymptotic behavior of kernel estimates at a fixed

point ¢. The asymptotics of global measures could be pursued as well.
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5.1 Time Independent Covariates

In many situations such as the epidemiological study of Section 3, the covariates X do not
depend on ¢, and only the outcome variable Y is repeatedly measured. Then the expectation
E (X(t)XT(t)) equals the (k4 1) x (k + 1) matrix F (XXT). Assuming that £ (XXT)

is invertible, (2.3) reduces to
(5.1) Bty = B (XXT) T E(XY(1)).

Denoting the observed covariates of the ith subject by X;o,..., X;r where X;; € R,
[ =0,...,k, an obvious estimate of the (XXT) is the sample average

n

EXXT =nt Z (XZ'O, .. .,Xik)T (XZ'O, .. -,Xik) .

=1
Equation (5.1) suggests that smoothing is then only needed for the estimation of £ (XY (t)).

Suppose that one would like to estimate 3(¢) using a kernel estimate. The modified version

of (2.6) then becomes
- . -1 L
(5.2) () = (EXXT) (N_lh_l ZXZ'TI(i(t)Yi)
=1
where Y; and /;(t) are as defined in Section 2.2 and
Xio Xip -+ Xig
Xio Xip -+ Xig
The asymptotic properties of ﬁ(t) then depend on the large sample behavior of
N ST XT R (1Y
=1
which can be analyzed by the same methods as in Section 4. Because of the limitation
of space, we will not pursue such an analysis here. Similarly, smoothing splines and lo-

cally weighted polynomials can be obtained for (5.1) by estimating £ (XY (¢)) using the

corresponding methods.

5.2 Binary Outcomes

The estimation methods of Section 2 are most appropriate for models with continuous

outcomes Y (¢). In situations such as evaluating the conditional probability of presence or

26



local averaging nature of kernel methods: the estimates tend to ignore the measurements
at design points ¢;; which are outside a shrinking neighborhood of ¢. Since the bandwidths
shrink to zero, any correlation between €;(¢) and ¢(s), t # s, is ignored when n is suffi-
ciently large. This is fortunate, since in practice we may only aware the presence of the
intra-correlations but have very little knowledge about the specific correlation structures.
By using a kernel estimate or any other equivalent local smoothing method, we essentially
choose to ignore the correlation structures. &

Remark 4.2. The reason that the ideal optimal bandwidth of (4.13) can be explicitly
derived from (4.12) is because the second term at the right hand side of (4.7) converges to
zero much faster than N 1A~ when A6 is satisfied and N goes to infinity. In particular,
when d = 2, Corollary 3 shows that f,,; should be of the order N-Y5 Then the best
possible convergence rate for ﬁ(t) is N=%/5 in terms of the mean squared errors. As it is
usually the case in nonparametric regression, ., depends on the unknown functions, such
as fr(t), pii,(t) and bi(t), etc., so that a data-driven estimate of k., is needed in practice.
We conjecture that some plug-in procedures analogous to those discussed in Hardle (1990) or
the cross-validation of Section 2.5 should be reasonable candidates to obtain good estimates
of hyps. But the theoretical justification of this conjecture is beyond the scope of this paper
and is omitted. &

Remark 4.3. Different smoothing parameters might be needed in practice to accom-
modate different smoothness among Go(t), ..., 8x(t). The kernel estimate 3(¢) as defined
in (2.6) only involves one smoothing parameter, hence, is not adequately equipped for this
task. For mathematical simplicity, assumptions A2 through A4 require that all the un-
derlying functions involved in (3(¢) belong to the same smoothness family, which may not
be realistic in many situations. Even so, the restriction of using one single smoothing pa-
rameter in ﬁ(t) may still produce undesirable smoothing results. On the other hand, the
smoothing splines of Section 2.3 involve k 4+ 1 smoothing parameters for the corresponding
k+ 1 nonparametric functions to be estimated. Thus further comparisons of theoretical and

practical adequacy between different linear estimates may be revealing. &

5 Discussion

In this section, we briefly discuss some extensions of model (1.2) and some open problems.

A number of potentially interesting topics merit further investigation.
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11=013=0

= (Z Z Ml1l2 bh bl2( )])
sV a0 ([ K du) [Z S M (B )]

{1=01,=0
+o (hzd) +o0 (N_lh_l) . O

COROLLARY 3. Suppose that the assumptions of Corollary 2 are satisfied. The optimal
bandwidth which minimizes the dominating terms of MSEY, (ﬁ(t)) is

(4.13) hop = N~ 7071 Jo() ([ K*(w) dw) (1) (S2F o Yoo Mur (D (D) ] 77
. opt = 2d S5 _o S8 2o My, (8)bi, (£)bi, (1)

b

and, by substituting hop into (4.11), the optimal mean squared error is given by

—2d

MSES (ﬁhom(t)) = NI [(zd)%ﬂzcx)ﬁ]

2d

(4.14) X _fT(t) (/ K2(u) du) (Z > My, (t)p, ( ))] o

11=010>=0
_1

2d+1
X Z Z Ml1l2 bh bl2( )]

[11=01>=0
—2d
to Nz ). O

One implication of the above results is that the asymptotic behaviors ofﬁ(t) also depend

on how fast n and n;, ¢ = 1,...,n, converge to infinity. In general, ﬁ(t) is not necessarily
a consistent estimate of 3(¢) when only N converges to infinity. For example, if n; = m,
i=1,...,m, m converges to infinity but n stays bounded, then, since N=2 (3°7_; n? — N) =
n~! — N7! is bounded away from zero for sufficiently large N, MSEZ, (ﬁ(t)) does not
converge to zero as N goes to infinity. But in most practical applications, n; stay bounded
for all = 1,...,n;, and n converges to infinity, then by Corollary 3 ﬁ(t) is asymptotically
equivalent to that with independent cross-sectional samples.

Remark 4.1. Asymptotically the effect of the intra-correlations on MSE, (ﬁ(t)) ap-
pears in I (%) through the covariance term p.(t) of €;(¢). In general, p.(t) does not necessary
equal to o%(t) [cf. Zeger and Diggle (1994)]. Notice here that Iy (¢) only depends on the

limiting values, p.(), of the covariances of ¢;(¢t) and €;(s) as s — t. This is because of the

24



It can be seen from Theorem 1 that Iy (t) only involves the biases of () while the
covariances and variances of (3j(t) are involved in IIy(t) and IIIy(t), respectively. The
convergence rates of Iy (¢) and the bias B* (ﬁ(t)) depend on the smoothness of the under-
lying functions f,, pi, and fr. However, Iy (¢) and Illx(?) converge to zero with rates
N72(X%,n?— N) and N7'h™!, respectively. It is interesting to see from (4.7) that the
intra-correlations of longitudinal data are only included in the term IIx(?) in the asymp-
totic expression of MSEg, (ﬁ(t)) Without this extra term, the asymptotic behaviors of
B(t) would be the same as with independent cross-sectional samples. Theorem 1 further
indicates that, in order to ensure the consistency of kernel estimates, no individual or a
small finite set of individuals should dominate in terms of proportions of measurements.

For some subfamilies of the smooth functions satisfying A2 through A4, the following

interesting results are direct consequences of Theorem 1.

COROLLARY 1. Suppose that the assumptions of Theorem 1 are satisfied, 3,, p; and
fr, L,r=0,...,k are d > 2 times continuously differentiable and K (-) is a dth-order kernel
as defined in Remark 2.1. Let A1(t) be the ath derivative of any function A(t) and

k d-1 a d—a)
(4.8) =YYy { (t )'0”(@ _( b))f,Tb,( J(_1y (/ WK (u) du)} .

r=0a=05b=0

When n is sufficiently large, the bias and the mean squared error of ﬁ(t) are given by

(4.9) B (A1) = F7' (1) [Exxr (D] B (bo(t), - .., ba(1))" + 0 (h?)
and
) Z n? k k
(4.10) MSEy (3(1)) = (1— =L )h?d(ZZM,1,2 You, (4)by, (1 )])
[1=01,=0

+ 7 () Uy (L) + fr(t (/A?(u )IHN(t)

0 (N—2 (; n2 — N)) +o(NT'hT) 4o (h*) . O

COROLLARY 2. Suppose that, in addition to the assumptions of Corollary 1,

L <\ for some constant X > 0.

(4.11) lim
The mean squared error of ﬁ(t) is then given by
(4.12)  MSEy (A1)
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4.2 Asymptotic Risk Representations

For the simple case that only the risk of one component, say ﬁl(t), is considered, the mean
squared error MSEZ(3(t)) only depends on the second moment of Ry(t) which can be
computed by evaluating the expectations, variances and covariances of the corresponding
terms of Rl(t). But, more generally, if two or more elements of the diagonal matrix w are
strictly positive, MSE?,V(B(t)) involves more complicated terms, such as expectations of the

cross products of different elements of R(¢). Thus, some notation is needed. Let

o2t) = E[g?(t)], i=1,...,m,

pe(t) = iimOE[q(t—l—A) a(t)], i=1,...,n,
pir(s) = E[XiuXil|ti; = s],

k
Bi(t) = Z / (B:(t = hu) — 8,(1)) pir(t — huw) fr(t — hu) K (u) du,

IN(t) = ZZ Ml1l2 Bh )Bl2(t)]7

11=010>=0

In(t) = N7%p(t (Zn - )[Z D My, (1) iy ( )]7

[1=010>=0

Hiy(t) = (Nh)™ [Z > My, (1)pn,( )]-

[1=010>=0

We now summarize the main results of this section in Theorem 1 and three corollaries.

THEOREM 1. Suppose that assumptions A1 through A6 are satisfied and t is an interior
point of the support of fr. When the number of subjects n is sufficiently large, then the bias

and the mean squared error are given by
(4.6) B (A1) = f7' (D) [Exxr (D))" E (R(1))
where ER(t) = (Bo(t),..., B(t)', and

> izt [nz (Ei;éi’ "z')]

In(t) + f7(0)1n (1)
—I—fT (/ K? ) IHN(t)
o (N_2 (an — N)) +o0 (N_lh_l) .

Furthermore, lim,_..o MSEY, (ﬁ(t)) =0 if and only if lim, ... max <<, (n;/N) = 0. O

(4.7) MSEy, (6(1) =

22



where

At) = [ (1) (Exxr(t)™ [ﬂinTffi(t)Xi — By xr(1) fT(t)]
=1
+171 @) (fr() = fr(1))
; I K& Lt =1
i = yE ()
1=1 5=1

and Eyxr(t) denotes the (k+ 1) x (k + 1) matrix & [X(t)XT(t)]. Notice that fr(t) is a
kernel estimate of the underlying marginal density fr(¢). It can be easily deduced from
standard results of kernel density estimates [e.g. Hirdle (1990)] that fp(t) — f(t) = 0,(1)
as n — oo and A — 0. Lemma 1 of Section 6 shows that, by taking a; ;, 1,(¢) of Lemma 1

to be Xy, Xiji, — E( Xy, (1) X1, (1)), all the (I, r)th elements of the (k4 1) x (k4 1) matrix

ﬁ SOXTE ()X — Exxr(t) fr(t)
=1

converges to zero in probability as n — oo and h — 0. Then, a direct consequence of (4.2)
is
(4.3) (14 0,(1)) (B(1) = B(1)) = f7' (1) (Exxr(1) ™" R(1)
where . .
R(1) = (ﬁ;ﬂ Ay(tm) _ (ﬁ;)ﬂ Ki(t)Xi) B(b).

Equation (4.3) implies that the error term ﬁ(t) — [B(t) can be approximated in probability
by 71 (8) (Exxr()™" R(1).

Thus, to avoid the technical inconvenience that might arise due to nonexistence of the
mean squared errors, the asymptotic risk of ﬁ(t) is described through the modified mean

squared error

(4.4) MSEy (B(0) = B [RT()M(1)R()]

where Ry(t) is the Ith element of the k 4 1 column vector R(t) and M, (t) is the (I,r)th
element of the (k4 1) X (k + 1) matrix

N7~ -1
M(t) = f720) ((Bxxr(0) ™) w(Bxxr ()™

Similarly, the bias of ﬁ(t) can be measured by

(4.5) B (A1) = f7' (1) (Exxr(1) ™ ER(1),
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Ab. The kernel function K(-) is bounded on R, and satisfies

/uaK(u) < 00, /K(u) du=1 and /1(2(u) du < 00

where a = max(ag, ag, az).
A6. The bandwidth h depends on n and satisfies lim,,_.., h = 0 and lim,,_.., nh = oo.

These assumptions are comparable with the regularity conditions commonly used in
nonparametric regression under independent cross-sectional data, e.g. Hardle (1990), and
are general enough to be satisfied in many interesting practical situations. Theoretically,
these assumptions could be further modified or even weakened in various ways so that more
desirable asymptotic properties of the kernel estimate ﬁ(t) may be obtained. Some of these
modifications and special cases will be further discussed later in this Section.

The risk of 3(-) as an estimate of 3(-) depends on the choice of loss functions. As men-
tioned in Section 2.5, because of its mathematical tractability a popular choice is squared
loss. Suppose that only the local risks of ﬁ() at time t are considered. Then the mean
squared errors as defined in (2.20) and (2.22) are reasonable measures of the risk of the /th
component (3;(t) and the predictive risk of 3(t), respectively. In general, (2.20) and (2.22)

are special cases of the following risk function

(4.1) MSEw (30) = £ | (50 - 50) " w (5(0) - 500) |

where w = diag(wo, ..., w;) with non-negative diagonal elements w;, I = 1,...,k. Here,
(2.20) corresponds to the case of w; = 1 and w, = 0 for all » # [, and (2.21) corresponds to
the case of w; = 27,1 =0,...,k.

Unfortunately, a minor technical inconvenience for the kernel estimate ﬁ(t) is that its
mean squared error as defined in (4.1) may not exist in general [cf. Rosenblatt (1969) and
Hérdle and Marron (1983)]. Thus, a slight modification of (4.1) has to be considered. By
(2.3) and (2.6), we have

B(t)—B(t) = (ZH:X?I&’i(t)Xi)_ (znjxfm(tm)

—(E[xox"0]) " (EE@Y@).

Rearranging the terms on both sides, the above equation implies

(4.2)  (1+AW) (31 = 8() = J7' () (Exxr(0)™ [(ﬁ ixmum)
L& .
- (ﬂ ;X?Ai(t)Xi) ﬂ(t)]
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4 Asymptotic Risks of Kernel Estimates

A natural approach to evaluate the adequacy of an estimator is through the asymptotic
behaviors of its risks. For mathematical simplicity, we only consider in this section the
asymptotic risk representations under the mean squared errors for the kernel estimates
as defined in (2.6).We believe that the asymptotic risks of smoothing splines and locally
weighted polynomials (LWPEs) may be analogously investigated, but we have not done so.

4.1 Assumptions and Mean Squared Errors

The estimation methods of Section 2 can accommodate both fixed and random designs. For
technical convenience, we assume that the design points ¢;;, 7 =1,...,n; and ¢ =1,...,n,
are chosen independently according to some design distribution F7 and design density fr.
(An examination of the proofs will reveal that the assumption that the design points within
subjects are chosen in such a way can be substantially relaxed.) In addition, the following

technical conditions are assumed throughout this section:
Al. X;; and ¢(+) are independent for allt=1,...,n and j =1,...,n;. In addition,

E [62(t)] <oo  and ELHOE [e(t + A)e(t)] < o0.

A2. Let EgQT(s) be the Irth component of the matriz (X(S)XT(S)). Fach E;&T(S)

withl,r = 0,...,k is Lipschitz continuous in the sense that there are positive constants

co and ag such that, for all s1,s9 € R,

‘EEQT(Sl) - EEQT(@)‘ < colsy — 52|

Furthermore, F (Xfﬂ) <oo foralli=1,....,n,5=1,....n; and [ =0,... k.
A3 Bi(+), 1 = 0,...,k, are Lipschitz continuous in the sense that there are positive con-

stants ¢1 and aq such that, for all t1,t; € R,
|Bi(t1) = Bult2)] < exlts — L]

AY4. The design density fr(-) is bounded away from zero at t, i.e. fr(t) > b for some
b > 0, and is Lipschitz continuous, i.e., there are positive constants co and ag such

that, for all t1,t5 € R,

|[fr(t) = fr(ta)] < ealtr = to] 2.
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Figure 4: Estimates, predictions and residuals using natural cubic splines with A;, | =
0,...,3 chosen to be the cross-validation smoothing parameters 0.125, 0.2, 2.5 and 0.2,
respectively. The dashed curves in the top four graphs of the estimates represent the +2
bootstrap standard error bands. Time effect: Bo(t) vs. time. HIV effect: Bl(t) vs. time.
VitA effect: the estimated effect of vitamin A fa(t) vs. time. Gender effect: (33(t) vs. time.
Weight vs. Time: The weight prediction curve when the vitamin A level is 29.5ug/ml. «.”
represents actual data. Residuals: Plot of residuals vs. time.
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Figure 3: Estimates, predictions and residuals using natural cubic splines with 0.7, 0.7,
20 and 0.7 as the corresponding smoothing parameters A;, [ = 0,...,3, respectively. The
dashed curves in the top four graphs of the estimates represent the £2 bootstrap standard
error bands. Time effect: Bo(t) vs. time. HIV effect: Bl(t) vs. time. VitA effect: the
estimated effect of vitamin A fBy(t) vs. time. Gender effect: (3(t) vs. time. Weight vs.
Time: The weight prediction curve when the vitamin A level is 29.5ug/ml. “-” represents

actual data. Residuals: Plot of residuals vs. time.
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Figure 2: Estimates, predictions and residuals using kernel method with the standard Gaus-
sian kernel and the cross-validation bandwidth h., = 0.5. The dashed curves in the top
four graphs of the estimates represent the £2 bootstrap standard error bands. Time effect:

ﬁio(t) vs. time. HIV effect: Bl(tl vs. time. VitA effect: the estimated effect of vitamin A

B2(t) vs. time. Gender effect: (§3(t) vs. time. Weight vs. Time: The weight prediction
represents actual data. Residuals: Plot

curve when the vitamin A level is 29.5ug/ml.

of residuals vs. time.
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Figure 1: Estimates, predictions and residuals using kernel method with the standard Gaus-
sian kernel and h = 1.2 as the bandwidth. The dashed curves in the top four graphs of the
estimates represent the +2 bootstrap standard error bands. Time effect: ﬁo(t) vs. time.
HIV effect: 31(t) vs. time. VitA effect: the estimated effect of vitamin A f5(t) vs. time.
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residuals vs. time points. A Gaussian kernel with A = 1.2 was used. The bootstrap stan-
dard errors were computed at 100 selected time points using 200 bootstrap replications by
resampling from the subjects, i.e. randomly resample the entire repeated measurements
of the subjects with replacement. From the figure it is seen that the magnitudes of the
coefficients of all three factors initially increase with time and then level off. The initial
increase with time probably reflects the cumulative effects of additional diseases early in
life due to HIV infection and/or low vitamin A levels. The leveling off of the difference
may be due to the establishment of the infants immunity function at one year of age and
frailty effects from the sickest and lowest weight babies dyeing. It appears that the weight
prediction at birth (a boundary point) has small amount of bias, but the predictions at all
interior time points are quite reasonable. All the estimates, ﬁl(t), [ =0,...,3, appear to be
slightly under-smoothed. The residual plot reveals a generally nice pattern despite a slight
increase of variation when ¢ > 2.

Figure 2 shows the similar graphs as in Figure 1 except that h = 1.2 is replaced by
the cross-validation bandwidth h., = 0.5. Although the cross-validation results give a
slightly better weight prediction at birth, all other estimates and predictions appear to
be substantially undersmoothed. Thus, because of the small bandwidth, the underlying
patterns of the coefficients [5o(t), $1(t), B2(t) and [3(t) can not be easily visualized. In
view of Remarks 2.5 and 2.6, a possible cause of this severe undersmoothness is that the
cross-validation criterion concentrated on minimizing the prediction errors.

As a comparison to the kernel estimates of Figures 1 and 2, Figure 3 shows the results
of natural cubic splines when the smoothing parameters, A;, [ = 0,1, 2,3, are chosen to be
0.7, 0.7, 20 and 0.7, respectively. All the estimates of §;(¢) and the prediction curves give
generally the same patters as those obtained in Figure 1. Despite a large smoothing pa-
rameter used for (1), the estimated curve ﬁg(t) still appears to be a little undersmoothed.
More substantial undersmoothing would appear if Ay, were also chosen to be 0.7.

Figure 4 presents the similar graphs as in Figure 3 except that the cross-validation
smoothing parameters 0.125, 0.2, 2.5 and 0.2 are used for Ag, A1, A2 and As, respectively.
Although Ag, Ay and As are smaller than those used in Figure 3, the general shapes of
ﬁo(t), ﬁl(t), and ﬁg(t) are basically the same as the corresponding estimates given in Figure
3. Again, the cross-validation estimate of f3(¢) seems to be slightly undersmoothed. It
is interesting to note here that the cross-validation procedure for smoothing splines gives

different A; values for [ = 0,...,3.
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3 An Application to Growth of Children

The data considered here involve infants’ genders and HIV infection status (HIV positive or
negative) measured one year after birth, the third trimester maternal vitamin A levels during
pregnancy and repeatedly measured weights of 328 infants from an African AIDS cohort
study at the Johns Hopkins University. The covariates in this example are not time varying,
although we allow their coefficients to be; further discussion of this structure is contained in
Section 5.1. All infants were born from HIV infected mothers in central Africa and survived
beyond one year of age. The follow-up study lasted two years and infants’ weights were
recorded during every scheduled monthly visit. Due to various reasons, a number of the
scheduled visits were missed by some infants which resulted in unequal numbers of repeated
weight measurements per infant. The main objective is to evaluate the time-varying effects
of two binary covariates, child’s gender and HIV status, and one continuous covariate, the
third trimester maternal vitamin A level, on child’s weight. Previous studies have shown
that vitamin A can improve immune function and resistance to disease [cf. Semba (1994)].
Biologically, a significant association between maternal vitamin A levels and infant growth
may suggest the benefit of vitamin A supplementation in the mother’s and infant’s diet.

This data set was initially analyzed by Semba et al. (1996) where vitamin A was treated
as a binary covariate (deficiency and nondeficiency), and the growth prediction curves were
obtained using parametric regression models and generalized estimation equations [cf. Dig-
gle, Liang and Zeger (1994)]. Here we use the actual measurements and fit the data to (1.2)
with X310 =+ = Xjp0 = 1,

[ v 1 if the ¢th infant is HIV positive,
11l = 2wl T 0 if the sth infant is HIV negative,
Xi12 = -+ = Xin,2 = the ith infant’s maternal vitamin A level,

X 1 if the ¢th infant is male,
i13 = T i3 T 0 if the sth infant is female,

Y;; = weight in kilograms of the ith infant at time ¢;; after birth.

For brevity, we only present the smoothing results of kernel and spline methods. The
smoothing results of LWPEs are very similar to those given by kernels and smoothing
splines.

Figure 1 shows the estimated values of 3;(¢), l = 0,...,3, together with their +2 point-
wise bootstrap standard error bands, the weight prediction curves with the maternal vitamin

A level taken to be 29.5ug/ml (the mean vitamin A level in the sample), and the plot of
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allowed in smoothing splines can be used to accompany possibly different smoothness of
the nonparametric components Go(t), ..., 3x(t). In particular, if Go(?), ..., Br(t) satisfy dif-
ferent smoothness conditions, it may not be possible to obtain appropriate fits to all these
components using kernel estimates or LWPEs which only one and possibly two smoothing
parameters, respectively. If a single smoothing parameter is desired for the smoothing spline
procedure, the covariates should all be standardized, since the A; are not dimensionless pa-
rameters. #

Remark 2.5. In practice, CV(A) can only be minimized within a preselected compact
set of the parameter space and there may be more than one local minima. Thus it is
often useful to first try several A subjectively, and then determine a workable range of
A by examining the fits and the CV(XA) values in this range. In case there is more than
one local minima, it is also helpful to re-examine the fit ofﬁ with each A which gives the
corresponding local minimum, instead of using A which gives the smallest local minima. &

Remark 2.6. The effect of leaving out one single subject in the computation of CV(X)
can be explicitly calculated as a perturbation from the full solution. Thus, an alternative
expression of CV(A) maybe useful to speed up the computation. To see how this works for

kernel estimates, notice first that, by (2.5),

n n

AB) =D L(1)Y:  and  ACH0)BCI() = 37 (0 - L)Y,

=1 7=1
where Ji(1) = XTK(t), A(t) = Yy XTK ()X, and ACI(1) = 3,4 XTK;(1)X;. By the
matrix updating formula, i.e. equation (A.2.1) of Cook and Weisberg (1982), we have
(AC)) " = (A - xTITm)
-1
(2.26) = AT+ AT 0X] [1=JF ATt ox]] T af AT

where JI(t) = K;(t)X; and [ is the n; X n; identity matrix. Then (2.25) implies that, for

kernel estimates,

CV(h) = %Zn: i lYij - X (A(_i)(tz’j))_l (Z: Jir(ti)Yir = Jz’(tz’j)Yz’)]

=1 7=1

: -1
where (A(_Z)(tij)) can be computed using the right hand side of (2.26). Similar expres-

sions can also be derived for smoothing splines and LWPEs. &
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(2.20) MSEs (fi (1) = E [(ﬁ,() ﬁl())Q], [ =0, k.

or average mean squared error (AMSE)

(2.21) AMSE, (61) = ZZE [(ﬂl 2] — B (tij))z] , 1=0,..k.

21]1

Alternatively, one could focus on the local fitness of all components of ﬁ (t) at any given

values (,t) as measured by

(2.22) MSE, (273 (1))

= B|(«7h(t) - 2" (t))Q]

Similarly, a useful measure of the global fitness of ﬁ (t) is the average mean squared error

(AMSE)
(X253 (1) - XEs (1, ))2] .

(2.23) AMSE, () = ZZE
Another quantity which measures the global risk ofﬁ in a similar manner as the AMSE is

21]1

the average predictive squared error

(2.24) APSE, (§) = ZE [( (t”))z]

21]1

where Y7 is a new observation at (X;;,1;;),i.e. Y;j = X}; (ti;)+ € (t;;) and €f (¢) is a new
mean zero stochastic process which has the same distribution as ¢; (¢).

For the data-driven smoothing parameters of this paper, we concentrate on the global
fitness of all the components of ﬁ Specifically, we consider the averaged predictive squared
error of 3. Let (=9 (1) be an estimate of 3 (¢) based on any one of the linear smoothing
methods described in Sections 2.2 through 2.4 by leaving out all the observed measurements

of the ith subject. The cross-validation APSE criterion is defined as

n
(2.25) Z [ i = (137)]
i=1j=1

Then our cross-validation smoothing parameter is defined to be A., which minimizes CV(A).

Remark 2.4. For the kernel estimates given in (2.6), minimizing CV(A) should return
one single smoothing parameter, the cross-validation bandwidth h.,. For smoothing splines
of Section 2.3, the cross-validation smoothing parameters consist Ag ey, ..., Ak v, Similarly,
the cross-validation smoothing parameters of LWPEs are window size and possibly the

degree of the polynominal used. Intuitively, the extra number of smoothing parameters
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function, the bandwidth is the corresponding smoothing parameter for window size. When
W;; (t) is the weight function defined on the k nearest-neighbors (cf. Section 2.11 of Hastie
and Tibshriani (1990)), then the size of the neighborhood k is the window size. Another
parameter is the degree of the local polynomial. Of these two parameters, the selection of
the window size is usually more important and may affect the rates of convergence for the
estimates. By selecting a different local polynomial, one may improve the constants of the
asymptotic mean squared errors of the estimates and their statistical properties near the
boundary. The usual choices here are local linear or quadratic polynomials. &

Remark 2.3. Since LWPEs are constructed based on direct generalizations of the kernel
estimates, they are equally intuitive and have known better statistical properties than kernel
methods. Computationally, all three methods, i.e. kernel estimates, smoothing splines
and LWPEs, require solving some linear systems and hence are comparable in terms of
computation time. However, further theoretical and simulation based comparisons between

these different smoothing methods are warranted. #

2.5 Selection of Smoothing Parameters

In practical implementation of the above linear smoothing methods, the smoothing parame-
ters can be selected subjectively by examining scatter plots and the fitted curves. However,
especially when more than one covariate is present, it is useful to develop automatic proce-
dures so that an adequate smoothing parameter can be directly suggested by the data.

Here we will focus on a method of cross-validation for smoothing parameter choice.
Following Rice and Silverman (1991), we use a form of cross-validation in which single
subjects are deleted one at a time, rather than single responses, since the latter procedure
is unsuitable when there is intra-subject correlation. Although theoretical properties of this
cross-validation method are still yet to be developed, the main advantage of the method is
that it does not rely on specific correlation structures of the data. An alternative, which
we have not pursued, would be modifications for longitudinal data of plug-in procedures
which have been developed independent cross-sectional data (Hall et al. (1991) and Fan
and Marron (1992), for example).

Smoothing in the current context could have a number of different objectives, especially
when ((t) has more than one component. For notational simplicity, we denote by A the
smoothing parameters of any linear estimates of this section. Interest might focus on the

risk of a single component [ (t) either at a fixed ¢ or globally as measured by mean squared
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such that

1 ta t?l_l
1 i ! :

B; = 2 and W, = diag(Wir (1), ..., Wi, (1))
1ty - 130

The equivalent matrix form of (2.15) is

T

(2.16) Ly (t) = Zn: (YZ — s X..1B;:b; (t)) W, (t) (YZ — Zk:Xi.lBibl (t)) .
=1 (=0 =0

Denote

T
Ly (t) = (MN t Oy (t)) . 1=0,..,k,

ob; 0by; T Oby
and set dLn/0b;(t) = 0, for al I = 0,...,k. If (l;o (t) 5.y b (t)) is a unique minimizer of

(2.15), it satisfies the generalized normal equations

n

k
(2.17) Z(X”BZ')T W, (YZ — ZXi~rBibr (t)) =0, [=0,..k.
r=0

=1
To simplify the notation, let

M (1) = (XaaB)" Wi (1), N (1) =3 (XuB)" Wi (1) (X Bi),
=1
b(t) = (bo(t),....br (1)) and A (1) be the matrix whose (r,1)th block is AV (1) with r =
0,...,kand [ =0,...,k. Then (2.17) is equivalent to

(2.18) N@)bt)=MoY

where M oY is the d 4+ k 4 1 column matrix (3} iy MioYi, ..o, > iy ./\/lzkYZ)T
If M (t) is invertible, then (2.18) implies

(2.19) b(t)=N"1({)(MoY).
Thus, (1) = (ﬁo (1) o B (t))T is uniquely defined by substituting b(t) of (2.19) into
(2.14). In order to compute the estimate a system of size d(k+ 1) X d(k+ 1) must be solved
for each t.

Remark 2.2. Comparing (2.14) with the kernel estimates as defined in (2.6), it is easy
to see that (2.6) is a special case of (2.14) with d = 1 and W;; (¢) being selected as a kernel
function. Here there are two smoothing parameters for the LWPEs of (2.14). One of them

is the window size which is incorporated into the weight functions. When W;; (t) is a kernel



a small system must be solved for each ¢, here a large system must be solved once. A
practical difficulty is that d can be quite large since, as noted above, it is of the order of the
number of distinct ¢;;. Backfitting is one way of coping with this difficulty. It can also be
quite adequately circumvented by approximating the smoothing spline solutions by splines
with a relatively small number of fixed equispaced knots as in Parker and Rice (1984), thus
drastically reducing the dimensionality of the computations.

Clearly, deeper theoretical properties of Gy (1)) ey B (t) with longitudinal observations

deserve further investigation, but are beyond the scope of this paper.

2.4 Locally Weighted Polynomials

This class of estimates is a generalization of the kernel type estimates, for which theory
and applications with independent cross-sectional data have been studied by Stone (1977),
Cleveland (1979), Buja, Hastie and Tibshriani (1989), Hastie and Tibshriani (1990), Fan
(1993) among others. This generalization has many advantages over the kernel methods,
particularly in estimation at boundary points [cf. Hastie and Loader (1993)]. Theoreti-
cal and simulation results indicate that smoothings with locally weighted polynomials are
effective alternatives to the smoothing splines.

Motivated by their performance in cross-sectional data, we propose a class of smoothing
methods which extends the existing approaches of locally weighted polynomials to longitudi-
nal data. Let W;; (¢),7=1,...,n,j = 1,...,n;, be weight functions of ¢;; and ¢. In particular,
W;; (t) may be selected as a kernel function K ((t —t;;) /h) as it is used in (2.4), or based
on nearest neighbors as in Section 2.11 of Hastie and Tibshriani (1990). The (d — 1)-Degree
Locally Weighted Polynomial Estimate (LWPE) of 5, (¢), [ = 0,..., k, is given by

d
(2.14) Bi(t)y=> b ()t =BT ()b (1)

r=1

T
where B (t) = (1,15, ...,td_l) are basis functions of the (d — 1)-degree polynomial and the

- A A T
coefficients b; (t) = (bll (1), ..., bdl(t)) minimize the locally weighted sum of squares

2

n o n; k
(2.15) LN<t>:Zz( =3 [xiB” (1) fn()]) Wi (1)

=1 7=1 (=0
with by (1) = (by; (1), ..., bar (1)) and b, (1) being real valued functions of ¢.
Let B; and W; be the basis matrix and the diagonal weight matrix of the ith subject



The second term at the right hand side of (2.7) is given by 2% o Ayf Qv Thus, (2.7) is

equivalent to

T

n k k k
(2.9) J (ﬁ, /\) = Z (YZ — XMBZ"VI) (YZ — ZX”BZ")/[) + Z /\l’leQ’yl.
= (=0

=1 [=0 =0
Setting each dJ (3, A) /0y, = 0, the minimizer (o, ...,7%) of (2.9) satisfies the normal
equations

n k k n
(2.10) > [(XZ».IBZ»)TZXZ».ZBM] 3 N =Y (XuB)TY, 1=0,.,k
=1 =0 =0 =1
Let M; = X, B;. Then, after rearranging the terms, (2.10) is equivalent to the equations
k n n
(2.11) Z [(Z MgMil) + /\jQ] Vi = ZM;YZ', [=0,.. k.

If the normal equations (2.10) have a unique solution (4o, ..., ¥%), without loss of gener-

ality there exist d X n; matrices Ny, for: =1,....,nand [ =0, ..., k, so that

(2.12) 1= NgYi, 1=0,..k
=1

The corresponding linear estimates o (1), ..., Bi (t) are obtained by substituting (7o, ..., V&)
with (99, ..., %) in (2.8), i.e.

d n
(2.13) Bi(t) = AuB, (1) =>_ BT (t)NayY;, 1=0,...k.
r=1 =1
Here the existence and uniqueness of the solution (g, ..., ¥%) of this linear system depend
on the design matrices Xy, ..., X,,, ¢; for i = 1,...,n, and the basis functions By (-), ...,

By (+). For practical implementation of smoothing splines, one has to select an adequate
smoothing parameter vector A and basis functions. The role of A is similar to that of h
in kernel estimates: a proper choice of A will result optimal convergence rates of BO (1),
vy Br (). Tt can be seen from (2.7) that too large a A; gives an excessive penality for the
roughness of 3;, thus results in an over-smoothed estimate ﬁl. Conversely, too small a A
results in an under-smoothed ﬁl.

In practice, if the unique solution of (2.10) exists, it may be found directly or by using
the “backfitting algorithm” suggested by Hastie and Tibshriani (1993). We note that (2.10)
comprises a system of equations of order (k + 1)d x (k + 1)d, the solution of which can

be used to find the estimates for all ¢. In comparison with the kernel method in which



2.3 Smoothing Splines

Splines are piece-wise polynomials which are joined smoothly at knots. Smoothing splines
are splines that minimize a particular penalized least squares criterion. Statistical proper-
ties and practical implementation of spline methods can be found in Eubank (1988) among
others. Suppose that the functions Fo(?), ..., Bx(t) of (1.2) are twice continuously differen-

tiable and their second derivatives ﬁo(t)”, ...,ﬁk(t)” are bounded and square integrable. A

smoothing spline estimate of Fo(%), ..., Bx(t) minimizes the penalized least squares criterion
no g k 2 k . 9

(2.7) J(BAN=D > {)/ij - [Z X (tij)] } + Z/\l/ [ﬁz (t)] dt
=1 5=1 (=0 =0

where A = (Ao, ..., /\k)T are positive valued smoothing parameters which penalize the rough-

ness of fg, ..., Bk. As in univariate smoothing (Eubank, 1988), it can be shown that the
minimizers of (2.7) are natural cubic splines with knots located at the distinct values of ¢;;.
For minimizing J (3, A) of (2.7), it is convenient to represent fo, ..., 3x in terms of spline

basis functions such as B-splines with knots as above. We express each 8; in the form

d
(2.8) Bi(t)=>_ B, (t) = BT () n

where d > 1, —00 < t < 00, y1 = (’yll,...,’ydl)T are real valued coefficients, and B (t) =
(Bi (1), ..., B4(1))" is a set of basis functions. We can then find the coefficient vectors 7,
l=0,1,...,k which minimize the quadratic functional J (3, A). For each subject 7, let X,

be the diagonal matrix:
Xy = diag (Xitt, - Xing)

Let t; = (i1, oo tin,) 5 1et By (t) = (Bi (L) s s Bi (tin;)) ", and let
Bi(tah) -+ Ba(tia)
B; = e e e
By (tin,) -+ Ba(tin,)
Then the first term at the right hand side of (2.7) can be written as

T

k k
(Yi -> Xi~lBi71) (Yz -3 Xi~lBi71) :

Furthermore, let 2 be the d x d matrix whose (7, j)th element is given by

0 = / B) (1) B (1) dt.



Let Y; and X; be the outcome vector and design matrix of the ith subject: Y, =
(1/2'17 71/2n1)T and
Xio X -0 Xiag
Xinio Xingt - Xingk
Let K;(t) be the diagonal matrix,
K (t) = diag (K [(t = ta) h7] s K [(2 = tin ) b7 ).

It is convenient to rewrite {y (¢) into the following matrix form

n

(2.4 I () = 30 (V= Xeg ()T Ko (1) (Vi — Xi (1)),
=1
For each given ¢ € R, 3 (¢) minimizes { () if it satisfies the k+1 equations d{n /05 (1) =
0 for all [ =0,...,k. By (2.4), these equations are equivalent to

(2.5) (Z XTK; (1) XZ») B(t)=> XK ()Y
=1 =1
A T
If 2", XTK; (t) X; is invertible, then (2.5) has a unique solution 3 (t) = (ﬁo (), ..., B (t))
such that

(2.6) B(t) = (znjxf K; (t)XZ»)_ (f:x}m (tm).

We note that (2.4)is a (k+ 1) x (k4 1) system that must be solved for each ¢.

The estimate 3 () depends on the choices of the bandwidth and the kernel function.
It is well known in estimation with independent cross-sectional data that the selection of
bandwidth is more important than the selection of the kernel function. We will see in
Section 3 and Section 4 that the selection of h also plays a crucial role in the properties of
B(t) in the current longitudinal setting.

Remark 2.1 Higher order kernels with negative lobes are necessary to achieve certain
asymptotically optimality properties in some cases (Hardle, 1990). (A d-th order kernel
satisfies [w/ K(u)du = 0, j = 1,2,...,d — 1 and [u?K(u)du # 0). Simulation results
[cf. Marron and Wand (1992)] with independent cross-sectional data have shown that the
desired asymptotic properties are only effective when the sample sizes are unusually large.
Thus, despite the theoretical advantages, there is frequently little motivation to use kernels

with negative lobes in applications.



in deriving the asymptotic properties (cf. Section 4). At the end of this section, we give a

description of a cross-validation criterion which for the selection of smoothing parameters.

2.1 Preliminary

To motivate the construction of our linear estimates and the analyses of their statistical
properties, it is convenient to represent [ (¢) in terms of the expectations of Y (¢) and X ().
Let X (t) be a k + 1 column vector and €(¢) be a mean zero stochastic process. Then

(Y (t), X (t)) satisfies the varying-coefficient model (1.2) if
(2.1) V(1) = X7 (1) 3 (1) + (1)

where X () and €(¢) are independent. Multiplying both sides of (2.1) by X (¢) and rear-

ranging the terms, we have

XWX @B =X (Y (1) - X (1) ().
Taking expectations on both sides of the above equation, we have
(2.2) E(X)XT(1) (1) = E(X ()Y (1)).

IfE (X ) x7T (t)) is invertible, then §(¢) is unique and given by

(2.3) Bty =E (XX (1) EX@0)Y 1),

If £ (X (t)yx” (t)) does not have a unique inverse, then 3 (¢) is not unique and the model

-1
(2.1) becomes unidentifiable. We assume for the rest of the paper that £ (X () xT (t))
exists. It is easy to show that, if £ (X () xT (t)) is invertible, §(t) as given in (2.3)

2
uniquely minimizes the second moment £ [(Y ) - XT(t)p (t)) ] for any given t € R.

2.2 Kernel Estimates

This class of estimates is developed based on finding the unique 3(t) = (8o (1), ..., B (1))

which minimizes the locally weighted least squares criterion

nong k 2 1t
=33 [nj— (mem (t))] K ()
=0

=1 7=1

where N = 377" | n; is the total number of observations, h is a positive bandwidth which

might depend on N, and K (-) is a Borel measurable kernel function mapping R onto R.



By generalizing the methods of Hastie and Tibshriani (1990), Zeger and Diggle (1994) and
Moyeed and Diggle (1994) suggested a backfitting procedure which initially estimates u ()
by a class of kernel estimates and then iteratively estimates 8 and g (¢). Their results
showed that this backfitting procedure had good asymptotic properties, such as consistency
and desirable rates of convergence, and was useful in predicting the depletion of CD4 cells
over time among HIV infected persons.

Because of the time dependent nature of the longitudinal studies, we consider in this

paper a direct generalization of the model (1.1) that allows the coefficients to vary over time
T
(1.2) Yij = X,;8 (L) + € (ti;)

where, for all t € R, 3(t) = (6o (1), ..., Bk (t))T, k > 0, are arbitrary smooth functions of ¢,
€ (t) is a mean zero stochastic process, and X;; and ¢; are independent. (We note that the
process €;(¢) need not have zero mean for each subject.) We make no assumptions on the
structure of ¢;(¢), such as it being stationary or autoregressive, for example. When the data
are obtained from the cross-sectional i.i.d. sampling, (1.2) reduces to the varying-coefficient
models studied by Hastie and Tibshriani (1993).

In Section 2, we present the three, computationally straightforward, nonparametric
estimates (kernels, smoothing splines and locally weighted polynomials) of 5(t), and set
forth cross-validation criterion for selecting the smoothing parameters. Section 3 applies
model (1.2) and our estimates to an epidemiological example, for predicting growth of
children born to HIV infected mothers, based on maternal vitamin A levels and children’s
gender and HIV status. Section 4 gives the asymptotic properties of the kernel estimates.
In Section 5, we discuss some potentially useful generalizations of (1.2) and other related

estimation methods. Finally, the proofs of the main results are deferred to Section 6.

2 Estimation by Linear Smoothing

Theory and applications of estimates based on kernel, spline and locally weighted polynomial
methods have been extensively studied in the literature for nonparametric curve estimation
with independent cross-sectional data. With properly selected smoothing parameters, these
estimation methods have good asymptotic properties such as optimal rates of convergence,
and usually give reliable results in real applications. Thus it is natural to extend these
methods to the estimation of 3 (¢) for observations from longitudinal studies. Here we first
give an alternative representation of (), and then present our nonparametric estimates.

This alternative representation provides insight into the nature of the estimates and is useful



this model and the corresponding nonparametric estimates are useful in epidemiological
studies.

1 Introduction

Longitudinal data occur frequently in medical and epidemiological studies where both the
outcome and the covariates of a set of randomly selected subjects are repeatedly recorded
on the same individuals over time. Let ¢ be the time a measurement is recorded, Y ()
and X (t) be the real valued outcome of interest and the R**' &k > 0, valued covariate,
respectively, observed at time ¢. Suppose there are n subjects, and, for each subject ¢, there
are n; > 1 repeated measurements of (Y (¢), X (¢),t) over time. The jth observation of
(Y (t),X (t),t) of the ¢th subject is denoted by (Y;;, X;;, %), 1 = 1,...,nand j = 1,...,n,
where X;; € RF*1 is given by the column vector Xi; = (Xsj0, ...,Xijk)T.

Under the classical linear model framework, theory and methods of regression with re-
peated observations have been extensively studied in the literature. These results include
Pantula and Pollock (1985), Ware (1985), Jones (1987), Diggle (1988), Jones and Ackerson
(1990), Jones and Boadi-Boteng (1991), among others. A summary of different types of
parametric approaches can be found in Diggle, Liang and Zeger (1994). While parametric
approaches are useful, questions will always arise about the adequacy of the model assump-
tions and the potential impact of model misspecifications on the analysis. This motivates
the use of nonparametric approaches.

For nonparametric models with fixed design time points, Hart and Wehrly (1986), Alt-
man (1990) and Hart (1991) considered kernel methods for estimating the expectation,
E(Y(t)), without the presence of the covariate X (¢), and derived a class of generalized
cross-validation bandwidth selection procedures. As an alternative to kernel methods, Rice
and Silverman (1991) considered a class of smoothing splines and proposed a method of
choosing the smoothing parameters by cross-validation in which subjects were left out one
at a time. Although the existing kernel and spline methods are successful in predicting the
mean change of Y (¢) over time, they only consider the effect of ¢ and do not take account
of other possibly important covariates.

To quantify the influence of covariates, Zeger and Diggle (1994) and Moyeed and Diggle

(1994) studied a semiparametric model
(1.1) Yij = p(tiy) + X358 + i (1)

where g = (4, ..., ﬁk)T is a vector of unknown constants in R¥, u(¢) is an arbitrary smooth

function of ¢ on the real line, and the error term ¢; () is a mean zero stochastic process.
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Abstract

This paper considers estimation of nonparametric components in a varying-coefficient
model with repeated measurements (Yi;, X;;,%;), ¢ = 1,...,n and j = 1, ..., n;, where
Xi; = (Xijo, ...,Xijk)T and (Y;;, X;j,t;;) denote the jth outcome, covariate and time
design points, respectively, of the ¢th subject. The model considered here is Y;; =
X% (ti;) + € (ti;) where 8(t) = (6o (1), ..., Br (t))T, k > 0, are smooth nonparametric
functions of interest and ¢; (¢) is a mean zero stochastic process. The measurements are
assumed to be independent for different subjects but can be correlated at different time
points within each subject. Three nonparametric estimates, namely kernel, smooth-
ing spline and locally weighted polynomial, of 3 (t) are derived for such repeatedly
measured data. A cross-validation criterion is proposed for the selection of the corre-
sponding smoothing parameters. Asymptotic properties, such as consistency, rates of
convergence and asymptotic mean squared errors, are established for the kernel esti-
mates. These asymptotic results give useful insights into the reliability of our general
estimation methods. An example of predicting the growth of children born to HIV in-
fected mothers based on gender, HIV status and maternal vitamin A levels shows that
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