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1. Introduction.

In Pitman (1995a) it was shown that if a circular Brownian motion with constant

drift is started at a �xed initial point, say 0, and stopped when it �rst returns to 0 after

a complete loop around the circle, then the resulting local time �eld is stationary with

respect to shifts around the circle. The same is true for stopping at the �rst return after

a clockwise loop or an anti-clockwise loop.

There is an immediate consequence of this fact for random walks. For a positive

integer r let Zr = f0; 1; 2; : : : ; r � 1g denote the group of integers with addition modulo

r, and let (Xt;P
x) be a continuous time simple (that is, nearest neighbour) random walk

on Zr, not necessarily symmetric. Think of the circle as the interval [0; 1[ equipped with

addition mod 1 and identify the elements of Zr with the points f0; 1=r; : : : (r � 1)=rg.
De�ne the occupation time process of X to be the vector-valued process ((�t(x))x2Zr

)t�0

given by

�t(x) = (jf0 � s < t : Xs = xgj)x2Zr
where j � j denotes Lebesgue measure. Let V� (respectively, V+, V�) denote the �rst time

the random walk returns to its starting point after a loop (respectively, anti-clockwise loop,

clockwise loop) around the circle. Recall that for Brownian motion with drift started at x,

the local time at x prior to the �rst visit to fx� a; x+ ag has an exponential distribution

for any x and any a > 0, and both the mean of this local time and the probability that

the �rst visit is to x + a can varied arbitrarily by suitably choosing the di�usion and

drift parameters of the Brownian motion. Combining these observations, we obtain the

following:

Proposition (1.1). The P0 distribution of (�V�(x + y))x2Zr is the same for all y 2 Zr.
The same is true for V+ or V� instead of V�.

There are other stopping times with the same property. Put

T0 = 0; Tk = minft � Tk�1 : Xt = kg for k = 1; : : : ; r � 1;

and

U+ = Tr = minft � Tr�1 : Xt = 0g:
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It is a consequence of Theorem 3.1 below that the P0 distribution of (�U+(x + y))x2Zr
is the same for all y 2 Zr. We remark that the two stopping times V� and U+ are not

comparable, in the sense that neither inequality V� � U+ nor V� � U+ holds almost

surely.

In view of these examples, it is natural to ask the following question. Given an

irreducible random walk on a �nite group, when is there a stopping time T such that the

distribution of the pre-T occupation times is stationary under the action of the group?

We will show in x3 that such a stopping time always exists, as a consequence of the

following more general proposition. If an irreducible Markov chain on a �nite state space

is equivariant under the action of a group of transformations on the state space (see x2
for the relevant de�nition), then there exists a non-randomised stopping time T such that

the distribution of the pre-T occupation times is invariant under the action of the group.

Moreover, exp(aT ) has �nite expectation for su�ciently small a > 0.

Note that for the walk on Zr the stopping times V� and U+ occur after the �rst time

S that all states have been visited (the cover time of the walk). Also, the stopping times

V� and U+ occur at the time of a return to the starting point. According to Proposition

(2.1), for an equivariant chain, both of these features are essentially necessary conditions

on a stopping time T for the distribution of the pre-T occupation times to be invariant.

This raises the question of stationarity of occupation times prior to the time of the �rst

return to the starting point after the cover time. In x4 we obtain an explicit formula for

the joint Laplace transform of these occupation times for an arbitrary �nite chain. For the

walk onZr we evaluate this formula to show that in this case the occupation times are not

stationary for r = 3 or r = 4. Finally, in x5 we make some comments about asymptotics

for the random walk following from results for Brownian motion on the circle.

While the results of this paper are presented for Markov chains with continuous time

parameter, these results also have discrete time analogs with positive integer valued occu-

pation times instead of positive real occupation times. Results for an embedded discrete

time jumping chain can be deduced by decomposition of the continuous occupation times

as sums of numbers of i.i.d. exponential variables determined by occupation counts for the

jumping chain. In particular, joint probability generating functions for discrete occupa-

tion counts can be read from joint Laplace transforms for continuous occupation times by

conditioning on the discrete counts. Further, due to the law of large numbers, asymptotics

for occupation counts of a symmetric discrete time walk on Zr, with counts normalized by

r, are the same as asymptotics for occupation times of the corresponding continuous time

walk on Zr, with holding times normalized to have mean 1=r.
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2. Some general observations.

Let E be �nite set and X = (
;F ;Ft;Xt;P
x; t � 0; x 2 E) be an irreducible,

continuous time, Markov chain on E. Assume that X has right-continuous paths of jump-

hold type.

Assume also that 
 is equipped in the usual way with shift operators �t : 
 ! 
 for

t � 0, so that Xs � �t = Xs+t, s � 0.

The occupation times process for X is the vector-valued process ((�t(x))x2E )t�0 given

by �t(x) = jf0 � s < t : Xs = xgj.
Let G be a �nite group of bijective transformations onE. The groupG acts transitively

if the orbit of any x 2 E under G is all of E, and in this case (E;G) is said to be a

homogeneous space. The chain X is equivariant under the action of G if, for all x 2 E,

g 2 G, and A 2 F ,
P
xfg �X 2 Ag = PgxfX 2 Ag:

A random vector (Zx)x2E has a distribution that is invariant under the action of G if the

distribution of (Zgx)x2E is the same for all g 2 E.

The cover time, W , for X is the �rst time that all states have been visited. Let S

denote the �rst time after W that X returns to its starting point.

Proposition (2.1). Suppose that (E;G) is a homogeneous space and X is equivariant

under the action of G. Fix e 2 E.

i) If T is a stopping time such that Pe[T ] < 1 and Pe[�T (x)] is the same for all x 2 E,

then XT = e, Pe-a.s.

ii) It T is a stopping time such that T > 0, Pe-a.s. and the Pe distribution of �T (x) is the

same for all x 2 E, then T �W , Pe-a.s.

Proof. (i) Let A denote the in�nitesimal generator of X. By assumption onX, the uniform

distribution on E is the stationary measure forX, and so
P

x2E Af(x) = 0 for any function

f on E. Thus,

P
e[f(XT )] = f(e) +Pe

"Z T

0

Af(Xs) ds

#

= f(e) +
X
x2E

Af(x)Pe[�T (x)] = f(e);

and so XT = e, Pe-a.s.
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(ii) If PefT > 0g = 1, then Pef�T (e) > 0g = 1. Thus, Pef�T (x) > 0g = 1 for all x 2 E

and T �W , Pe-a.s.

ut

Proposition (2.2). Suppose that (E;G) is a homogeneous space and X is equivariant

under the action of G. Fix e 2 E. Suppose that T is a stopping time such that Pe[T 2] <1,

P
e[�T (x)] is the same for all x 2 E, and for each pair (x; y) 2 E � E, Pe[�T (gx)�T (gy)]

is the same for all g 2 G. Then

P
e[�T (x)�T (y)] = (#E)�2Pe[T 2] +Pe[T ]�(x; y);

where �(x; y) = (#E)�1
R1
0

�
P
xfXt = yg+PyfXt = xg � 2(#E)�1

�
dt.

Proof. As a consequence of a central limit theorem for stationary processes with suitable

mixing properties, we �nd that for any function v on E the asymptotic Pe distribution

of (
P

x2E v(x)�t(x) � t(#E)�1
P

x2E v(x))=
p
t as t ! 1 is Gaussian with mean 0 and

variance

�2(m) =
X
x2E

X
y2E

v(x)v(y)�(x; y)

(cf. Ch 2 of Aldous and Fill (1995)). On the other hand, we know from Proposition (2.1)(i)

that T = e, Pe-a.s., and the central limit theorem for additive functionals of a regenerative

stochastic process (Theorem 3.2 of Asmussen (1987)) yields the same Gaussian asymptotics

with the following alternative expression for �2(m):

P
e[T ]�2(m) = Var

" X
x2E

v(x)�T (x) � T (#E)�1
X
x2E

v(x)

#

= Var

" X
x2E

v(x)�T (x)

#
+ (#E)�2

 X
x2E

v(x)

!2

Var[T ]

� 2(#E)�1

 X
x2E

v(x)

!
Cov

" X
x2E

v(x)�T (x); T

#
;

where Var[W ] = P
e[W 2] � Pe[W ]2 and Cov[V;W ] = P

e[VW ] � Pe[V ]Pe[W ]. Note that

for all x 2 E we have, by assumption, that Pe[�T (x)] = (#E)�1Pe[T ] and Pe[�T (x)T ] =

(#E)�1Pe[T 2]. Thus,

P
e

" X
x2E

v(x)�T (x)

!2#
=

 X
x2E

v(x)

!2

(#E)�2Pe[T 2] +Pe[T ]
X
x2E

X
y2E

v(x)v(y)�(x; y)
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and the result follows immediately by polarisation.

ut

For use in the proof of the next result and later, we need to introduce a little more

notation. Adjoin a cemetery state @ to Zr. Given a function v � 0 on E, let Pxv denote

the law of the process started at x and killed and sent to @ at rate v(y) when the process

is in state y. Set � = infft � 0 : Xt = @g.

Propostion (2.3). Suppose that G acts on E, X is equivariant under the action of G,

and T; T 0 are two stopping times. If any three of the random vectors �T , �T 0, �T_T 0,

�T^T 0 have P
e distributions that are invariant under the action of G, then the same is true

of the remaining random vector.

Proof. Note that for a stopping time R we have

P
e

"
exp

 
�
X
x2E

v(x)�R(x)

!#
= Pe

"
exp

 
�
Z R

0

v(Xs) ds

!#
= PevfR < �g:

Thus

P
e

"
exp

 
�
X
x2E

v(x)�T^T 0(x)

!#

= Pev(fT < �g [ fT 0 < �g)
= PevfT < �g+PevfT 0 < �g �Pev(fT < �g \ fT 0 < �g)
= PevfT < �g+PefT 0 < �g �PefT _ T 0 < �g

= Pe

"
exp

 
�
X
x2E

v(x)�T (x)

!#
+Pe

"
exp

 
�
X
x2E

v(x)�T 0 (x)

!#

�Pe
"
exp

 
�
X
x2E

v(x)�T_T 0 (x)

!#
:

ut

To conclude this section, we record the following proposition, which shows that one

naive attempt to construct an invariant occupation �eld succeeds only in trivial cases to
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produce a stopping time with �nite expectation. For x 2 E, de�ne a completed hold in x

to be an interval [
; �[ such that

i) X
 = x,

ii) 
 = 0 or X
� 6= x,

iii) X� 6= x.

For t � 0, let Nt(x) denote the number of completed holds in x of the form [
; �[ with

� � t. Set

� = infft � 0 : all Nt(x); x 2 E; are equalg:

If � <1, Pe-a.s. for some e 2 E, then it is obvious that �� has an invariant distribution

for any group acting on E.

Proposition (2.4). Suppose that (E;G) is a homogeneous space and X is equivariant

under the action of G. Fix e 2 E. Then Pe[� ] < 1 if and only if for some r 2 N there

exists a bijection J between E andZr such that J �X is the completely asymmetric simple

random walks that only makes jumps of size +1.

Proof. It is clear that if X is isomorphic to a completely asymmetric random walk, then

P
e[� ] <1.

Consider the converse. Suppose that X is not isomorphic to a completely asymmetric

random walk and yet Pe[� ] < 1. Then, setting � = infft � 0 : Xt 6= X0g, there exists
y; z 2 E, y 6= z, such that 0 < P

efX� = yg < 1 and 0 < P
efX� = zg < 1. Also, if

we write T1; T2; : : : for the successive return times to e, then � 2 fT1; T2; : : :g, Pe-a.s., by
Proposition (2.1)(i).

We claim that there must exist x 2 E such that PefNT1(x) = 0g > 0. Choose g; h 2 G

such that y = ge and z = he. There is positive Pe probability that the list of successive

states visited by X prior to T1 is e; ge; g2e; : : : ; gi�1e (respectively, e; he; h2e; : : : ; hj�1e),

where i = minf` : g`e = eg (respectively, j = minf` : h`e = eg). If E 6= fe; ge; : : : ; gi�1eg
or E 6= fe; he; : : : ; hj�1eg, then the claim is obvious. Otherwise, h�1e = gke for some k

Observe that k = i� 1 cannot hold, because that, in this instance, would imply g = h.

Consequently, there is positive Pe probability that X successively visits just e; ge; : : : ; gke

prior to T1, and again the claim follows.

By the strong Markov property, fNTn(x) � NTn(e)gn2N under Pe is the process of

partial sums of a sequence of i.i.d.r.v. that are not a.s. constant. Thus, for M = inffn �
1 : NTn(x) �NTn(e) = 0g we have Pe[M ] = 1, and hence Pe[TM ] = 1. Since � � TM ,
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this contradicts Pe[� ] <1.

ut

Remark. Using ideas similar to those in the above proof and the transience of random

walks on Zd for d � 3, it follows that it will typically be the case that Pef� < 1g < 1,

but we do not have a necessary and su�cient condition.

3. Construction of a stopping time.

Theorem (3.1). Suppose that G acts on E and X is equivariant under the action of G.

Fix e 2 E. There is a stopping time U such that Pe[exp(aU)] < 1 for su�ciently small

a > 0 and the Pe distribution of (�U (x))x2E is invariant under the action of G.

Proof. De�ne an equivalence relation on E � E by declaring that the pairs (x; y) and

(x0; y0) are equivalent if (x0; y0) = (gx; gy) for some g 2 G.

De�ne a trip through E to be an ordered list of the elements of E. We will recognise

two trips (z0; z1; : : : ; z#E�1) and (z00; z
0
1; : : : ; z

0
#E�1) to be the same if there exists 0 � j �

#E � 1 such that z0i = zi+j for 0 � i � #E � 1, where the addition in the subscript

is performed modulo #E. Given a trip (z0; z1; : : : ; z#E�1) and g 2 G, de�ne the trip

g(z0; z1; : : : ; z#E�1) as (gz0; gz1; : : : ; gz#E�1).

Fix a trip c� and write C for the orbit of c� under the action of G. Observe that

if (x; y) 2 E � E, then the number of trips (z0; z1; : : : ; z#E�1) 2 C such that (x; y) 2
f(z0; z1); (z1; z2); : : : ; (z#E�1; z0)g only depends on the equivalence class of (x; y).

Let c1; : : : ; cm be a listing of C. For 1 � k � m choose the representative

(zk0 ; z
k
1 ; : : : ; z

k
#E�1) of c

k so that zk0 = e. Put zk#E = e.

For 1 � k �m and 1 � i � #E, put

T k
i = minft � 0 : Xt = zki g:

De�ne Sk0 ; : : : ; S
k
#E inductively by Sk0 = T k

0 and Ski = T k
i � �Sk

i�1
for 1 � i � #E. De�ne

U0; : : : ; Um inductively by U0 = S10 = T 1
0 and Uk = Sk#E � �Uk�1 for 2 � k � m. Thus

U0 = 0 underPe, and at each Uk, k � 1, the chain has returned to e after, loosely speaking,

passing through E in the order speci�ed by the trip ck. Set U = Um.
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For 1 � k �m, 1 � i � #E, and x 2 E, put

Lki (x) = jfSki�1 � �Uk�1 � t < Ski � �Uk�1 : Xt = xgj;

so that �U =
P

k

P
i L

k
i .

Rewrite this sum as

�U =
X

(x;y)2E�E

X
f(k;i):zk

i�1
=x;zk

i
=yg

Lki : (3:1)

Note that the summands are independent, and the number of summands in the second

sum only depends on the equivalence class of the pair (x; y).

Now for any g 2 G,

(�U (gw))w2E =
X

(x;y)2E�E

X
f(k;i):zk

i�1
=x;zk

i
=yg

(Lki (gw))w2E

=
X

(x;y)2E�E

X
f(k0;i0):zk

0

i0�1
=gx;zk

0

i0
=gyg

(Lk
0

i0 (gw))w2E : (3:2)

We have observed that

#f(k; i) : zki�1 = x; zki = yg = #f(k0; i0) : zk0i0�1 = gx; zk
0

i0 = gyg:

Moreover, by assumption on X, if zki�1 = x, zki = y, zk
0

i0�1 = gx, and zk
0

i0 = gy, then the

P
e distributions of (Lki (w))w2E and (Lk

0

i0 (gw))w2E coincide. Comparing (3.1) and (3.2)

(and recalling that the summands are independent) we see that the distribution of �U is

invariant under the action of G. The claim regarding the existence of exponential moments

is clear from the construction.

ut

Remark. The stopping time U+ given in x1 for the case E = G = Zr and X a simple

random walk is obtained from the construction in the proof by taking c� = (0; 1; : : : ; r�1).

4. First return after the cover time.

Let X be as in x2. De�ne S to be the time of the �rst visit of X to its starting point

after the cover time, W . Write A for the in�nitesimal generator of X. We will think of A
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as a (#E) � (#E) matrix. Given a function v � 0 on E, let Mv be the diagonal matrix

representing the operation of multiplication by v. For a subset B � E let AB denote the

in�nitesimal generator matrix for X killed on hitting B and let MB
v denote the diagonal

matrix representing multiplication by v restricted to the complement of B (that is, AB and

MB
v are (#E �#B) � (#E �#B) sub-matrices of A and Mv, respectively, constructed

by removing the rows and columns that correspond to B).

Theorem (4.1). For a function v � 0 on E we have

P
e

"
exp

 
�
X
x2E

v(x)�S(x)

!#
=

X
e=2B�E

(�1)#B (�A
B +MB

v )
�1
e;e

(�A+Mv)
�1
e;e

:

Proof. By de�nition, Pe[exp(�Px2E v(x)�S(x))] = P
e[exp(� R S0 v(Xs) ds].

On the one hand, we have by the strong Markov property and the Feynman-Kac

formula for Markov chains (see, for example, Pitman (1995b)) that

P
e

"Z 1

S

exp

 
�
Z t

0

v(Xs) ds

!
1(Xt = e) dt

#

= Pe

"
exp

 
�
Z S

0

v(Xs) ds

!#
P
e

"Z 1

0

exp

 
�
Z t

0

v(Xs) ds

!
1(Xt = e) dt

#

= Pe

"
exp

 
�
Z S

0

v(Xs) ds

!#
(�A+Mv)

�1
e;e:

On the other hand,

P
e

"Z 1

S

exp

 
�
Z t

0

v(Xs) ds

!
1(Xt = e) dt

#

= Pe

"Z 1

0

exp

 
�
Z t

0

v(Xs) ds

! Y
x2E

1

 Z t

0

1(Xs = x) ds > 0

!
1(Xt = e) dt

#

= lim
�!1

P
e

"Z 1

0

exp(�
Z t

0

v(Xs) ds)
Y
x2E

(
1� exp(��

Z t

0

1(Xs = x) ds)

)
1(Xt = e) dt

#

= lim
�!1

X
B�E

(�1)#B(�A +Mv +M�1B )
�1
e;e;

again by the Feynman-Kac formula.
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Combining these two observations, we get

P
e

"
exp

 
�
Z S

0

v(Xs) ds

!#
= lim

�!1

X
B�E

(�1)#B (�A+Mv +M�1B )
�1
e;e

(�A +Mv)
�1
e;e

=
X

e=2B�E

(�1)#B (�AB +MB
v )

�1
e;e

(�A+Mv)
�1
e;e

:

ut

Corollary (4.2). Suppose that X is a simple random walk on Zr. Then

P
0

"
exp

 
�
X
x2E

v(x)�S(x)

!#

= 1�
Pr�1

i=1 (�Afig +M
fig
v )�10;0 �

Pr�2
i=1 (�Afi;i+1g +M

fi;i+1g
v )�10;0

(�A +Mv)
�1
0;0

:

Proof. In this case, the sum in Theorem (4.1) reduces to a similar sum over subsets

e =2 B � E containing at most 2 points with the coe�cients (�1)#B replaced by suitable

combinatorially derived coe�cients. When B is empty, a singleton or two adjacent points,

the coe�cients are, respectively, 1, �1, and 1. When B consists of two non-adjacent points

and the arc between them that does not contain e has k points, then the coe�cient is�
k

0

�
�
�
k

1

�
+

�
k

2

�
� � � �+ (�1)k

�
k

k

�
= 0:

ut

There is an alternative derivation of Corollary (4.2) that the reader might �nd illumi-

nating. Recall the notation introduced prior to Proposition (2.3)

Applying the strong Markov property at S, we �nd that

P
0
vfS < �g =P

0
vfS < �gP0vfX�� = 0g

P
0
vfX�� = 0g

=
P
0
vfS < �; X�� = 0g
P
0
vfX�� = 0g

=P0vfS < � j X�� = 0g:
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The last term is the P0v conditional probability that there does not exist a state i such that

i is not hit by X but i + 1 is hit by X before � given that X�� = 0. By the reasoning in

Proposition 3 of Pitman (1995b),

P
0
vfXt 6= i; 80 � t < � j X�� = 0g = (�Afig +M

fig
v )�10;0

(�A +Mv)
�1
0;0

and

P
0
vfXt =2 fi; i+ 1g; 80 � t < � j X�� = 0g = (�Afi;i+1g +M

fi;i+1g
v )�10;0

(�A +Mv)
�1
0;0

;

and Corollary (4.2) follows.

For small values of r, it is straightforward to evaluate the expression of Corollary

(4.2) using a computer algebra package such as Mathematica. We take the holding times

in each state to have mean 1=r. This scaling leads to occupation times that for large r have

asymptotically the same distribution as the local times for circular Brownian motion prior

to the �rst return to 0 after the cover time, so it is of interest to compare these results for

small r with their Brownian limits, which are further discussed in x5.
Let P0(r) denote probabilities for the walk on Zr started in state 0. For r = 2 it is

obvious that �S(0) and �S(1) are i.i.d. exponential random variables with rate 2, so

P
0
(2)[exp(�a�S(0))] = 1� 1

2
a+

1

4
a2 � 1

8
a3 +

1

16
a4 +O(a)5

P
0
(2)[exp(�a�S(1))] = P0(2)[exp(�a�S(0))]:

For r = 3 we have

P
0
(3)[exp(�a�S(0))] = 1� 5

9
a +

23

81
a2 � 101

729
a3 +

431

6561
a4 +O(a)5

P
0
(3)[exp(�a�S(1))] = 1� 5

9
a +

24

81
a2 � 112

729
a3 +

512

6561
a4 +O(a)5

P
0
(3)[exp(�a�S(2))] = P0(3)[exp(�a�S(1))];

so that the one-dimensional marginals of �S are not equal.

For r = 4 we have

P
0
(4)[exp(�a�S(0))] = 1� 7

12
a +

89

288
a2 � 1081

6912
a3 +

12833

165888
a4 +O(a)

5

P
0
(4)[exp(�a�S(1))] = 1� 7

12
a +

91

288
a2 � 1133

6912
a3 +

13735

165888
a4 +O(a)

5

P
0
(4)[exp(�a�S(2))] = 1� 7

12
a +

93

288
a2 � 1197

6912
a3 +

15096

165888
a4 +O(a)5

P
0
(4)[exp(�a�S(3))] = P0(4)[exp(�a�S(1))]:
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Again the one-dimensional marginals of �S are not equal. The results of x5 of Pitman

(1995a) imply that as r increases the P0(r) distribution of �S(k) depends less and less on k

as k ranges over Zr. To be precise,

lim
r!1

P
0
(r)[exp(�a�S(k))] =

2p
a(2 + a)3

tanh�1
r

a

2 + a

= 1� 2

3
a +

2

5
a2 � 8

35
a3 +

8

63
a4 +O(a)5

(4:1)

where the convergence is uniform for k 2Zr, and the limit has an interpretation in terms

of Brownian local times which is discussed in the next section. The Laplace transform on

the right-hand side of (4.1) can be inverted to conclude that

lim
r!1

P
0
(r)[�S(k) > x] = xK1(x) exp(�x); x > 0;

where K1 is the modi�ed Bessel function, and the limit holds uniformly in x > 0 and

k 2Zr. Moreover, as we see in the next section, the moments of �S(k) converge uniformly

in k to those of the limiting distribution.

Before �nishing this section, we make some further observations about the time S

for the symmetric simple random walk on Zr. Recall that the stopping time U+ of x1 is

the result of the construction in the proof of Theorem (3.1) when c� = (0; 1; 2; : : : ; r � 1).

We can de�ne another stopping time U� as the result of that construction when c� =

(0; r � 1; r � 2; : : : ; 1).

Proposition (4.3). In the above notation, S = U+ ^ U� , P0(r)-a.s.

Proof. First note that under P0(r) the stopping time U+ is the in�mum of those times s for

which there exists 0 < s1 < s2 < � � � < sr�1 < s such that Xsi = i, i = 1; : : : ; r � 1 and

Xs = 0. Similarly, under P0(r) the stopping time U� is the in�mum of those times t for

which there exists 0 < tr�1 < tr�2 < � � � < t1 < t such that Xti = i, i = r � 1; : : : ; 1 and

Xt = 0. Clearly, S � U+ ^ U�, so it remains to show that S � U+ ^ U�.

De�ne an excursion interval to be an interval of the form [�; �[, where:

i) either � = 0 or X�� 6= 0,

ii) X� = 0,

iii) � = infft � 
 : Xt = 0g with 
 = infft � � : Xt 6= 0g.
Call the corresponding path segment fXt : � � t < �g an excursion. Say that the

excursion is positive (respectively, negative) if X
 = 1 (respectively, X
 = r � 1).

13



The set of states visited by a positive excursion are of the form f0; 1; : : : ; jg. Moreover,

if X�� 6= r � 1, then we can �nd times s1 < : : : < sj < tj < tj�1 < : : : < t1 during the

excursion interval such that Xs` = Xt` = `. An analogous comment holds for negative

excursions.

If [0; S[ is an excursion interval then we are done, because S is then U+ or U�,

depending on whether the excursion is positive or negative.

If [0; S[ is not an excursion interval, then the union of the set of states visited by

the largest (in the sense of visiting the most states) positive excursion during [0; S[ and

the set of states visited by the largest (in the same sense) negative excursion during [0; S[

must be all of Zr, because two excursions of the same sign visit the same set of states

or one visits a subset of the states visited by the other. Suppose �rst of all that the

largest positive excursion during [0; S[ occurs before the largest negative excursion during

[0; S[. Write [�+; �+[ and [��; ��[ for the associated excursion intervals. Let f0; 1; : : : ; jg
be the states visited during [�+; �+[ and fk; k + 1; : : : ; r � 1; 0g be the states visited

during [��; ��[. From the observations made above, we have that k � j and there exists

�+ < u1 < � � � < uj < �+ � �� < uj+1 < � � � < ur�1 < �� such that u` = `,

` = 1; : : : ; r � 1. Thus, U+ � S in this case. Similarly, if the largest negative excursion

occurs before the largest positive excursion, then U� � S.

ut

As we noted above, �S is not in general stationary under P0(r), whereas �U+ and �U�

are both stationary. We have remarked that �V+, �V�, and �V� = �V+^V�, are stationary,

and it might have been tempting (but false!) to conjecture on that basis that for a general

equivariant chain if �T and �T 0 have group invariant distributions for two stopping times

T; T 0, then �T^T 0 also has a group invariant distribution. Recall, however, Proposition

(2.3).

5. Brownian counterparts.

In this section, let P0 govern X = (Xt; t � 0) as a standard Brownian motion on

a circle, and let �t(x) denote the corresponding local time at x up to time t. As in x1,
we identify the circle with the interval [0; 1[ equipped with addition mod 1. With some

recycling of notation, de�ne V� to be the �rst time X makes a complete loop around the

14



circle, beginning and ending at 0. The fact that the local time �eld �V� is stationary is

derived in Pitman (1995a) from a formula for the Laplace functional

�(m) := P0

"
exp

 
�
Z

�V�(x)m(dx)

!#

of a �nite measure m on the circle. For m with �nite support, say m =
P

u2F au�u

where �u is a unit mass at u, so that �

 P
u2F au�u

!
:= P0[exp(�Pu2F au�V�(u))], this

formula reads

�(
X
u2F

au�u) =

�
1 +

1

2

X
A�F

�(A)
Y
u2A

(2au)

��1
(5:1)

where
P

A�F is a sum over all non-empty subsets A of F , and �(A) is the product of

the spacings around the circle between points of A. In particular, for F = fu; u + pg
for arbitrary u and p in [0; 1[, and a; b � 0, the joint Laplace transform of �V�(u) and

�V�(u+ p) at (a; b) is

�(a�u + b�u+p) =

�
1 + a + b+ 2abp(1 � p)

��1

Applied to F contained in the set of multiples of 1=r, formula (5.1) gives the joint Laplace

transform of the stationary occupation �eld derived from the embedded symmetric simple

walk on Zr as in Proposition (1.1). Similar remarks hold for V+ and V� instead of V�.

Reusing some more notation, let S denote the �rst return to 0 following the cover time for

the circular Brownian motion. Considerable evidence was presented in Pitman (1995a) to

support the conjecture that �S is stationary under P0 with Laplace functional of the form

P
0

"
exp

 
�
Z

�S(x)m(dx)

!#
=

�

1 + �
(1 +

�p
1� �2

tanh�1
p
1� �2) (5:2)

where � = �(m). For example, this formula is correct when m is supported on two

points, which implies that the two-dimensional marginals of the �eld �S are invariant

under circular shifts. For m with one point support (5.2) simpli�es to yield the expression

(4.1) for the Laplace transform of �S(x) for arbitrary x 2 [0; 1[. Formula (5.2) is also

correct form uniform on any sub-interval of the circle, in particular for m uniform on [0; 1[

with total mass a, when this expression for the Laplace transform for S simpli�es to

P
0[exp(�aS)] =

p
2a+ sinh

p
2a

(1 + cosh
p
2a) sinh

p
2a

= 1� 2

3
a+

13

45
a2 � 97

945
a3 +

613

18900
a4 +O(a)5

(5:3)
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The limit result (4.1) for the symmetric simple random walk on Zr follows straight-

forwardly from (5.3), as S for the embedded random walk converges almost surely to S

for the Brownian motion as r ! 1. Moreover, note that S � V� holds for both the

embedded random walk and the Brownian motion, and V� is the same for both the walk

and the Brownian motion and has all moments �nite. Thus, it follows that all moments of

the pre-S occupation times for the random walk converge to moments of pre-S local times

for the Brownian motion.

If formula (5.2) does hold for all �nite m, it will be a remarkable state of a�airs. For

�S would then be stationary relative to circular shifts, but any proof of this that proceeded

by \path surgery" using features such as the equivariance of X would appear to have a

random walk counterpart, and we know from x4 that the random walk analog is false in

general.

The method of xx4 and 5 of Pitman (1995a) yields an explicit formula for the Laplace

functional of the asymptotic distribution of the stationary occupation �eld of the symmetric

simple random walk on Zr at either of the times U+ and U� introduced below Proposition

(1.1). This asymptotic distribution turns out to be the same for both U+ and U�. That

is to say, the limiting occupation �eld for U+ is invariant with respect to a reversal of

direction around the circle. Similar methods allow an exact computation of the Laplace

functional of the occupation �eld of the walk on Zr at time U+. This �eld too turns out

to be reversible, a curious fact which we are unable to prove by path transformation.

The time corresponding to U+ for the Brownian motion can be de�ned as follows. Let

B = (Bt; t � 0) be the standard one-dimensional Brownian motion started at 0 obtained

by unwrapping the circular Brownian motion X under P0. De�ne a continuous increasing

process (M�
t ; t � 0) and a sequence of stopping times 0 = T0 < T1 < T2; � � � inductively

as follows. For n � 1, let Tn be the �rst time t > Tn�1 that (supTn�1�s�tBs) � Bt = 1,

and let

M�
t = n� 1 + sup

Tn�1�s�t
Bs �Bt for Tn�1 � t < Tn

Then the Brownian U+ is the �rst t such that M�
t = 1. It is easily seen that the values

M�
Tn

for n = 1; 2; � � � are the points of a Poisson process with rate 1, so the number of Tn

with n � 1 and Tn < U+ is a Poisson variable with mean 1. The local time process �U+

of the circular Brownian motion X now decomposes as the sum of this Poisson random

number of local time processes associated with anticlockwise loops of X, and a local time

process associated with short excursions of X, as de�ned in x4 of Pitman (1995a). Results

of that paper show that these two components of �U+ are independent and stationary, with

simple Laplace functionals whose product is the Laplace functional of �U+. To illustrate,
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this approach yields the formula

P
0[exp(�a�U+(x)] = exp

�
� 2

r
a

2 + a
tanh�1

r
a

2 + a

�

= 1� a +
5

6
a2 � 19

30
a3 +

229

504
a4 +O(a)5

(5:4)

This is the Laplace transform of the limit of the P0(r) distribution of �U+(k) as r !1 for

arbitrary k 2 Zr, where P0(r) governs the symmetric walk on Zr with exponential holding

times with mean 1=r, as in x4. Again, all moments also converge. The corresponding

limiting P0(r) distribution of U+=r = (1=r)
P

k2Zr
�U+(k) is the distribution of U+ for the

Brownian motion, which is determined by the Laplace transform

P
0[exp(�aU+)] = exp

 p
2a(1� cosh(

p
2a))

sinh(
p
2a)

!

= 1� a +
2

3
a2 � 11

30
a3 +

451

2520
a4 +O(a)5

(5:5)

We conclude by recording a Brownian analog of Proposition (2.2). From Bolthausen

(1979) we see for a �nite measure m on [0; 1[ that the asymptotic P0 distribution of

(
R
�t(x)m(dx) �m([0; 1[)t)=

p
t as t!1 is Gaussian with mean 0 and variance

�2(m) =

Z Z

(y � x)m(dx)m(dy);

where 
(v) = 1
3
� 2v(1� v), 0 � v < 1. We can argue as in the proof of Proposition (2.2)

to obtain the following:

Proposition (5.1). Suppose that T is a stopping time with P0[T 2] < 1 and such that

P
0[�T (x)] = �T for all x 2 [0; 1[ and P0[�T (x)�T (x + p)] = rT (p) for all x and p 2 [0; 1[

for some constant �T and some function rT (p); 0 � p < 1. Then

�T = P0[T ]; rT (0) = P
0[T 2] +

1

3
P
0[T ] (5:6)

rT (p) = rT (0) � 2p(1� p)�T (5:7)

To illustrate, the stationarity of �U+ implies that the above identities hold for T = U+.

The �rst two moments �U+ and rU+(0) of the common distribution of �U+(x) for all

x 2 [0; 1[ can be read from (5.4) as

�U+ = 1; rT (0) =
5

3
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Now (5.6) implies

P
0[U+] = 1; P0[U2

+] =
4

3

in agreement with the expansion (5.5) As another example, the stationarity of two-

dimensional distributions of �S implies that the identities of Proposition (5.1) hold also

for T = S. From the common Laplace transform of �S(x) for for all x 2 [0; 1[ displayed in

(4.1),

�S = 1; rS (0) =
4

5

Now (5.6) implies

P
0[S] =

2

3
; P0[S2] =

26

45

in agreement with (5.3). The consequent identity (5.7) for T = S does not seem easy to

verify more directly.
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