
The two-parameter Poisson-Dirichlet

distribution derived from a stable

subordinator. �

by
Jim Pitman and Marc Yor

Technical Report No. 433

Department of Statistics
University of California
367 Evans Hall # 3860
Berkeley, CA 94720-3860

Aug 25,1995

�Research supported in part by N.S.F. Grant DMS-9404345

1



Abstract

The two-parameter Poisson-Dirichlet distribution, denoted pd(�; �),
is a distribution on the set of decreasing positive sequences with sum
1. The usual Poisson-Dirichlet distribution with a single parameter �,
introduced by Kingman, is pd(0; �). Known properties of pd(0; �), in-
cluding the Markov chain description due to Vershik-Shmidt-Ignatov,
are generalized to the two-parameter case. The size-biased random
permutation of pd(�; �) is a simple residual allocation model pro-
posed by Engen in the context of species diversity, and rediscovered
by Perman and the authors in the study of excursions of Brownian
motion and Bessel processes. For 0 < � < 1, pd(�; 0) is the asymp-
totic distribution of ranked lengths of excursions of a Markov chain
away from a state whose recurrence time distribution is in the domain
of attraction of a stable law of index �. Formulae in this case trace
back to work of Darling, Lamperti and Wendel in the 1950's and 60's.
The distribution of ranked lengths of excursions of a one-dimensional
Brownian motion is pd(1=2; 0), and the corresponding distribution for
Brownian bridge is pd(1=2; 1=2). The pd(�; 0) and pd(�; �) distribu-
tions admit a similar interpretation in terms of the ranked lengths of
excursions of a semi-stable Markov process whose zero set is the range
of a stable subordinator of index �.
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1 Introduction

The subject of this paper is a two-parameter family of probability distribu-
tions for a sequence of random variables

(Vn) = (V1; V2; � � �) with V1 > V2 > � � � > 0 and
P

n Vn = 1 a.s. (1)

This family is an extension of the one-parameter family of Poisson-Dirichlet
distributions, introduced by Kingman [33] and denoted here by fpd(0; �); � >
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0g, which arises from the study of asymptotic distributions of random ranked
relative frequencies in a variety of contexts including number theory [57],
combinatorics [58, 3, 25], and population genetics [63, 19]. Study of an en-
larged family, involving another parameter � with 0 � � < 1, is motivated by
parallels between pd(0; �) and the asymptotic distributions of ranked relative
lengths of intervals derived in renewal theory from lifetime distributions in
the domain of attraction of a stable law of index � [37, 65]. As explained in
Section 1.2, this family of asymptotic distributions for (Vn) as in (1), denoted
here by fpd(�; 0); 0 < � < 1g, can be interpreted in terms of ranked lengths
of excursion intervals between zeros of B, where B is Brownian motion for
� = 1

2
, or a recurrent Bessel process of dimension 2 � 2� for 0 < � < 1.

By a change of measure relative to pd(�; 0), with a density depending on �
described in Proposition 13, we can de�ne pd(�; �) for arbitrary 0 < � < 1
and � > ��, then recover Kingman's Poisson-Dirichlet distribution pd(0; �)
for � > 0 as the weak limit of pd(�; �) as � # 0. We prefer however to present
a uni�ed de�nition of pd(�; �) as follows.

1.1 The size-biased permutation of pd(�; �)

The following de�nition originates from the application of random discrete
distributions to model the division of a large population into a large number
of possible species or types. A ranked sequence of random frequencies (Vn)
as in (1) represents the structure of an idealized in�nite population that has
been randomly partitioned into various species. Then Vn represents the pro-
portion of the population that belongs to the nth most common species. See
[17, 33, 19, 16, 44, 46] for background and further references to such appli-
cations. The size-biased permutation of (Vn) is the sequence of proportions
of species in their order of appearance in a process of random sampling from
the population. This notion is made precise as follows. For (Vn) as in (1),
call a random variable ~V1 a size-biased pick from (Vn) if

P ( ~V1 = VnjV1; V2; � � �) = Vn; (n = 1; 2; � � �) (2)

Here ~V1 may be already de�ned on the same probability space as (Vn), or
constructed by additional randomization on an enlarged probability space.
Similarly, call ( ~V1; ~V2; � � �) a size-biased permutation of (Vn) if ~V1 is a size-
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biased pick from (Vn), and for each n = 1; 2; � � �, j = 1; 2; � � �,

P ( ~Vn+1 = Vj j~V1; � � � ; ~Vn;V1; V2; � � �) = Vj1(Vj 6= ~Vi for some 1 � i � n)

(1 � ~V1 � � � � � ~Vn)

Following Engen [17], Perman-Pitman-Yor [44], we make the following
de�nition in terms of independent beta random variables. See also Sections
9.1 and 9.2 for further motivation. Recall that for a > 0, b > 0, the beta(a; b)
distribution on (0; 1) has density

�(a+ b)

�(a)�(b)
xa�1(1� x)b�1 (0 < x < 1) (3)

De�nition 1 For 0 � � < 1 and � > ��, suppose that a probability P�;�
governs independent random variables ~Yn such that ~Yn has beta(1��; �+n�)
distribution. Let

~V1 = ~Y1; ~Vn = (1 � ~Y1) � � � (1 � ~Yn�1) ~Yn (n � 2) (4)

and let V1 � V2 � � � � be the ranked values of the ~Vn. De�ne the Poisson-
Dirichlet distribution with parameters (�; �), or pd(�; �) to be the P�;� dis-
tribution of (Vn).

Results of [44] show that this de�nition of pd(�; �) agrees with the pre-
vious descriptions of pd(0; �) and pd(�; 0), and yield the following result:

Proposition 2 [44, 46] Under P�;� governing ( ~Yn), ( ~V n) and (Vn) as in
De�nition 1, ( ~V n) is a size-biased permutation of (Vn).

For � = 0 this result was obtained by McCloskey [41]. Ewens [19] calls
the distribution of ( ~V n) de�ned by (4) the GEM distribution, after Gri�ths,
Engen and McCloskey. Engen [17] considered the residual allocation model
(4) for ( ~V n) for 0 � � < 1 and � > 0, and established the consequence of
Proposition 2 that for (Vn) with pd(�; �) distribution, a size-biased pick ~V 1

from (Vn) has beta(1� �; �+�) distribution. As noted by Engen, this gives
the following formula for all non-negative measurable functions f :

E�;�

1X
n=1

f(Vn) = E�;�
~V
�1

1 f( ~V 1) =
�(� + 1)

�(� + �)�(1 � �)

Z 1

0
duf(u)

(1 � u)�+��1

u�+1

(5)
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where E�;� denotes expectation with respect to the probability distribution
P�;� in De�nition 1.

The particular choice of beta distributions for ~Yn in De�nition 1, and
the consequent parameter set f0 � � < 1; � > ��g for the two-parameter
Poisson-Dirichlet distribution, is dictated by the following result, which gen-
eralizes a well known characterization of pd(0; �) due to McCloskey [41]. See
[46] for variations and further references.

Proposition 3 [46] For (Vn) as in (1), a size-biased random permutation
( ~V n) of (Vn) admits the expression (4) for a sequence of independent random
variables ( ~Yn) i� the distribution of the ~Yn is of the form assumed in De�-
nition 1, that is i� (Vn) has pd(�; �) distribution for some 0 � � < 1 and
� > ��.

1.2 Interval lengths derived from a subordinator

Following Lamperti [37], Wendel [65], Kingman [33], Perman-Pitman-Yor
[43, 44, 50], consider the sequence

V1(T ) � V2(T ) � � � � (6)

of ranked lengths of component intervals of the set [0; T ]nZ, where Z is a
random closed subset of [0;1) with Lebesgue measure 0, and T is a strictly
positive random time. Suppose Z is the closure of the range of a subordinator
(�s; s � 0), i.e. an increasing process with stationary independent increments.
We assume that (�s) has no drift component, so

E[exp(���s)] = exp
�
�s

Z 1

0
(1� e��x)�(dx)

�
(7)

where the L�evy measure � on (0;1) is the intensity measure for the Poisson
point process of jumps (�s � �s�; s � 0). Call (�s) a gamma subordinator if
�(dx) = x�1e�xdx; x > 0, that is if �s has the gamma(s) distribution

P (�s 2 dx) = �(s)�1xs�1e�x dx (x > 0); (8)

for each s > 0. There is the following well known representation of pd(0; �):
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Proposition 4 [33] If (�s) is a gamma subordinator then for every � > 0

 
V1(��)

��
;
V2(��)

��
; � � �

!
has pd(0; �) distribution (9)

independently of ��.

Call (�s) a stable subordinator of index �, where 0 < � < 1, if � = ��

where
��(x;1) = Cx�� (x > 0) (10)

for some constant C > 0. That is, from (7), for � > 0

E[exp(���s)] = exp(�sK��) where K = C�(1 � �): (11)

The following companion of Proposition 4 plays a key role in this paper. The
equality in distribution of the two sequences displayed in (12) and (13) was
established in [50], while the connection with De�nition 1 was made in [44].
See also [5, 50, 62, 51] regarding the relation between the this description of
pd(�; 0) and the generalized arc-sine laws of Lamperti [36].

Proposition 5 [44, 50] If (�s) is a stable (�) subordinator for some 0 < � <
1 then for every s > 0

 
V1(�s)

�s
;
V2(�s)

�s
; � � �

!
has pd(�; 0) distribution (12)

and also for every �xed t > 0

 
V1(t)

t
;
V2(t)

t
; � � �

!
has pd(�; 0) distribution (13)

Since the zero set Z of a standard one-dimensional Brownian motion B
is the closure of the range of a stable (12) subordinator [40], (13) shows that
pd(12; 0) is the distribution of the ranked lengths of the excursions of B away
from 0 during the time interval [0; 1], where the lengths include the length
1�G1 of the �nal meander interval, where

Gt = sup([0; t) \ Z) = supfs : s < t;Bs = 0g (14)
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pd(�; 0) can be interpreted similarly, in terms of the ranked lengths of excur-
sion intervals, if the Brownian motion B is replaced by a suitable semi-stable
Markov process [38], for example a Bessel process of dimension � = 2 � 2�
[42], or, for 0 < � < 1

2 , a stable L�evy process of index 1=(1 � �) [21].
The pd(�;�) distribution arises naturally as the distribution of ranked

lengths of excursions of a semi-stable Markov bridge derived from a Markov
process whose zero set is the range of a stable (�) subordinator [65, 50, 44].
It is well known that such a bridge can be derived from the unconditioned
process on interval [0; Gt] by appropriate scaling. So as a companion to (12)
and (13), in the same setting we have for each �xed t > 0,

 
V1(Gt)

Gt

;
V2(Gt)

Gt

; � � �
!

has pd(�;�) distribution (15)

independently of Gt. In particular, we note the following:

Proposition 6 [44, 50] If Vn is the length of the nth longest excursion of B
away from 0 over the time interval [0; 1], then

(Vn) has pd(
1
2 ; 0) distribution if B is Brownian motion; (16)

(Vn) has pd(
1
2
; 1
2
) distribution if B is Brownian bridge. (17)

Stepanov [55] encountered asymptotics involving pd(1
2;

1
2) in the study

of the asymptotic distribution of the sizes of tree components in a random
mapping. The connection with Brownian bridge in this setting is explained
in Aldous-Pitman [1].

The pd(�; 0) distribution also arises as the asymptotic distribution of

 
V1(T )

T
;
V2(T )

T
; � � �

!
(18)

either for �xed T as T !1, or for T = �s as s! 1, for any subordinator
(�s) such that �(x;1) = x��L(x) as x ! 1 for a slowly varying function
L(x). Similarly, pd(�; 0) is the asymptotic distribution as n!1 of

 
X(n;1)

Sn
;
X(n;2)

Sn
; � � � ; X(n;n)

Sn

!
(19)
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for X(n;1) � X(n;2) � � � � � X(n;n) the order statistics of of i.i.d positive ran-
dom variables X1; � � � ;Xn with sum Sn, assuming P (Xi � x) = x��L(x) as
x!1. Related results have been studied by many authors: see for instance
[12, 4, 37, 29, 30, 52]. Many limit distributions found in these papers are
exact distributions of various functions of a pd(�; 0) sequence. For instance,
Darling [12] found the characteristic function of the limiting distribution of
Sn=X(n;1) in (19). This is the characteristic function of 1=V1 for a pd(�; 0)
sequence (Vn). Lamperti [37] derived the corresponding Laplace transform,
given by (37) of this paper with n = 1, from the asymptotic distribution as
n ! 1 of the maximum up to time n of the age process derived from a
discrete renewal process with lifetime distribution in the domain of attrac-
tion of a stable law of index �. That the same transform appears in both
Darling's and Lamperti's works amounts to the equality in distribution of
�rst components in (12) and (13). The equality in distribution of the �rst n
components in (12) and (13) can be interpreted similarly as an asymptotic
result in renewal theory.

1.3 Organization

The main theme of this paper is the development of various results for
pd(�; �) in the general two parameter case. Mostly these results are known
in one or other of the special cases � = 0 or � = 0. Many results acquire their
simplest form for pd(�; 0) with 0 < � < 1. These results for pd(�; 0) are
presented in Section 2, followed by results for pd(�; �) in Section 3. These
two sections also serve as a guide to the rest of the paper, which contains
proofs of the results in Sections 2 and 3, and various further developments.

2 Main results for pd(�; 0)

Results stated in this Section are proved in Section 4.

Proposition 7 Suppose (Vn) has pd(�; 0) distribution for some 0 < � < 1.
Let

Rn =
Vn+1
Vn

(20)

Then Rn has beta(n�; 1) distribution, that is

P (Rn � r) = rn�; (0 � r � 1) (21)
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and the Rn are mutually independent.

Since (Vn) can be recovered from (Rn) as

V1 =
1

1 +R1 +R1R2 +R1R2R3 + � � � ; Vn+1 = V1R1R2 � � �Rn (n � 1);

(22)
the following simple construction of pd(�; 0) is an immediate corollary of
Proposition 7.

Corollary 8 Suppose (Rn) is a sequence of independent random variables
such that Rn has beta(n�; 1) distribution, for some 0 < � < 1. Then (Vn)
de�ned by (22) has pd(�; 0) distribution.

The next proposition summarizes and sharpens some results from [33, 50]:

Proposition 9 Suppose (Vn) has pd(�; 0) distribution for some 0 < � < 1.

(i) The limit
L := lim

n!1
nV �

n (23)

exists both almost surely and in pth mean for all p > 0.

(ii) Let
� := (L=C)�1=�; �n := Vn�: (24)

Then � has the same stable (�) distribution as �1 in (11), the �n are
the ranked points of a prm �� on (0;1), where ��(x;1) = Cx�� for
x > 0, and (Vn) may be represented as

Vn = �n=� where � =
X
n

�n (25)

(iii) Let
Xn := ��(�n;1) = C���

n = LV ��
n (26)

Then the X1 < X2 < � � � are the points of a prm (dx) on (0;1), i.e.

Xn = �1 + � � �+ �n (27)

where the �i are independent standard exponential variables, and (Vn)
may be represented in terms of (Xn) as

Vn =
X�1=�
nP

mX
�1=�
m

(28)
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In the setting described of Section 1.2, where Vn = Vn(1) is the nth
longest subinterval in the complement of [0; 1]nZ where Z is the zero set of
a semi-stable Markov process X, L is a multiple of the local time of X at
zero up to time 1. See [51] for the corresponding result when Vn = Vn(T )=T
for suitable random T . The distribution of L = C��� is determined by its
moments

E(Lp) = CpE(���p) =
�(p + 1)

�(p� + 1)
�(1 � �)�p (p > �1) (29)

So �(1��)L has the Mittag-Le�er (�) distribution [21, 42, 7, 44]. The joint
distribution of L and V1; � � � ; Vn can be read from that of � and V1; � � � ; Vn,
which is described in Proposition 45. In formula (28), which serves to con-
struct a pd(�; 0) sequence (Vn) from a sequence of independent standard ex-
ponential variables (�n), the denominator has a stable (�) distribution. This
method of constructing a random variable with in�nitely divisible distribu-
tion from the ranked jumps of its Poisson representation, originally due to
L�evy, has been exploited in several contexts [61, 39].

The next Proposition exposes results underlying a formula for the Laplace
transform of 1=Vn that is stated in Corollary 11 following the proposition.
This formula was obtained in di�erent settings by Darling [12] and Lamperti
[37] for n = 1 and Wendel [65] for n = 2; 3; � � �. See also Horowitz [30],
Kingman [33], Resnick [52].

Proposition 10 Suppose (Vn) has pd(�; 0) distribution for some 0 < � < 1.
Let A0 = 0 and for n = 1; 2; � � � de�ne random variables An and �n by

An :=
V1 + V2 + � � �+ Vn

Vn+1
=

1

Rn
+

1

RnRn�1
+ � � �+ 1

RnRn�1 � � �R1
; (30)

�n :=
Vn+1 + Vn+2 + � � �

Vn
=

1� V1 � � � � � Vn
Vn

= Rn+RnRn+1+RnRn+1Rn+2+� � � :
(31)

where Rn = Vn+1=Vn as in Proposition 7. For � � 0 let

��(�) := �
Z 1

1
dx e��xx���1 (32)

 �(�) := 1 + �
Z 1

0
dx (1 � e��x)x���1 = �(1 � �)�� + ��(�) (33)
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Then
1

Vn
= 1 +An�1 + �n where (34)

(i) An�1 is distributed as the sum of n� 1 independent copies of A1, with

E[ exp(��An�1) ] = ��(�)
n�1 (35)

(ii) �n is distributed as the sum of n independent copies of �1 with

E[exp(���n)] =  �(�)
�n (36)

(iii) An�1 and �n are independent.

Corollary 11 [12, 37, 65] If (Vn) has pd(�; 0) distribution, then the distri-
bution of Vn is determined by the Laplace transform

E[exp(��=Vn)] = e����(�)
n�1 �(�)

�n (37)

For Vn = Vn(1) derived from the interval lengths Vn(t) generated by the
range of a stable (�) subordinator, Wendel obtained (37) by considering the
random times

Hn := infft : Vn(t) = 1g (38)

for n = 1; 2; � � �, and using the identity in distribution

Hn
d
=

1

Vn
(39)

which follows by scaling from the equality of events

(Hn > t) = (Vn(t) < 1)

While both (H�1
n ) and (Vn) are decreasing random sequences, and (H�1

n )
has the same one-dimensional distributions as (Vn), this identity does not
extend even to two-dimensional distributions, due to the fact that

P
n Vn =

1 while there is no such constraint on
P

nH
�1
n . However, comparison of

Wendel's argument with our derivation of Proposition 10 reveals a remarkable
extension of the identity in distribution (39):
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Proposition 12 For each n = 1; 2; � � � 
V1(Hn)

Hn
;
V2(Hn)

Hn
; � � �

!
has pd(�; 0) distribution. (40)

See also [51] for a generalization of Propositions 5 and 12.
Several authors have studied questions related to the a.s. limiting be-

haviour of Vn(t) as t! 1 for Vn(t) derived from the range of a stable sub-
ordinator. See e.g. Chung-Erd�os [10], Csaki-Erd�os-Revesz [11]. See Hu-Shi
[31] for a number of re�nements obtained using results of this paper.

3 Main results for pd(�; �)

Results stated in this Section are proved in Section 5 except where otherwise
indicated. For 0 � � < 1 and � > �� let E�;� denote expectation with
respect to the probabilityP�;� governing ( ~V n) and (Vn) as in De�nition 1. So
the P�;� distribution of (Vn) is pd(�; �) .

3.1 Change of measure formulae

The basis for most of our computations for pd(�; �) with 0 < � < 1 is the
following Proposition, according to which the pd(�; �) distribution admits a
density relative to the pd(�; 0) distribution that is just a constant times L�=�

where L is the local time variable introduced in Proposition 9.

Proposition 13 [44] Let 0 < � < 1 and � > ��. For every non-negative
product measurable function f ,

E�;�[ f(V1; V2; � � �)] = C�;�E�;0[L
�=� f(V1; V2; � � �)] (41)

where L := limn!1 nV �
n as in (23), and

C�;� =
1

E�;0(L
�=�)

=
�(� + 1)

�( �
�
+ 1)

�(1 � �)�=� (42)

This is a re-expression of Corollary 3.15 of [44] using de�nitions made in this
paper. The constant C�;� is determined by (29). See also [47, 50, 45] for
various alternative expressions for L.
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Proposition 13 can be reformulated in various ways using di�erent de-
scriptions of pd(�; 0) . For example, in the setting of Proposition 5, with
Vn(�1) the nth largest jump of a stable (�) subordinator (�s) over 0 � s � 1,
we obtain

E�;�[ f(V1; V2; � � �)] = c�;�E

"
���1 f

 
V1(�1)

�1
;
V2(�1)

�1
; � � �

!#
(43)

where c�;� = C�=�C�;� for C�;� as in (42).
Proposition 13 shows that for �xed � with 0 < � < 1 the pd(�; �) distributions

are mutually absolutely continuous as � varies. By contrast, for � = 0 it is
well known that the pd(0; �) distributions are mutually singular as � varies.
Due to the way the de�nition of the local time variable L depends on �, the
pd(�; 0) distributions are mutually singular as � varies, hence so too are the
pd(�; �) distributions for any �xed �.

In Section 7 we obtain the following result, which generalizes both the
Markov chain description of pd(0; �) due to Vershik and Shmidt [58, 59] and
Ignatov [32], and Proposition 7 for pd(�; 0).

Theorem 14 Let

Yn = Vn=(Vn + Vn+1 + � � �) so (44)

V1 = Y1; Vn = (1� Y1) � � � (1� Yn�1)Yn (n � 2) (45)

Let Rn = Vn+1=Vn. For 0 � � < 1; � > ��, let P�;� govern (Vn) according
to the pd(�; �) distribution, and let P �

�;� govern (R1; R2; � � �) as a sequence of
independent random variables, such that Rn has beta (�+n�; 1) distribution.
Then

E�;�[ f(Y1; Y2; � � �) ] = K�;�E
�
�;�[Y

�
1 f(Y1; Y2; � � �)] (46)

for a constant K�;�. Both P�;� and P �
�;� govern (Yn) as a Markov chain with

the same forwards transition probabilities.

The chain (Yn) is stationary and homogeneous under P �
0;�, but for 0 < � < 1

the chain is non-homogeneous, and the distribution of Yn depends on n, in a
manner described precisely in Section 7.

According to Proposition 7, under P�;0 for 0 < � < 1 the ratios Rn :=
Vn+1=Vn are mutually independent. Under P�;� for � 6= 0 this is no longer
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true. However, it follows from Proposition 14 that under P�;� the Rn are
asymptotically independent for large n with beta (� + n�; 1) distributions.
There is also the following formula for the joint density of R1; � � � ; Rn:

Proposition 15 Suppose 0 < � < 1, � > ��, and � 6= 0. For 0 < ri <
1; i = 1; 2; : : : ; n,

P�;�(R1 2 dr1; : : : ; Rn 2 drn)
dr1 � � � drn = C�;��

n��(n+
�

�
; �; an)�

n
i=1 r

i��1
i

where

an =
1

rn
+

1

rn rn�1
+ � � �+ 1

rn � � � r1
and the function �� is de�ned by

��(`; ; a) :=
�(` + 1)

�()

Z 1

0
dt t�1e�t�at �(t)

�`�1 = E[L` V ��`
1 (1 + aV1)

� ]

(47)

3.2 One-dimensional distributions

As an application of Proposition 13 we obtain the following formula for mo-
ments of the one-dimensional marginals of a pd(�; �) distributed sequence:

Proposition 16 For 0 < � < 1; � > ��; p > 0; n = 1; 2 � � �

E�;�(V
p
n ) =

�(1 � �)
�
�

�(n)

�(� + 1)

�(� + p)

�( �
�
+ n)

�( �
�
+ 1)

Z 1

0
dt tp+��1e�t��(t)

n�1 �(t)
� �

�
�n

(48)
where  �(t) and ��(t) are as in (36) and (35).

The following asymptotics as n!1 are consequences of (23): for 0 < � < 1,
� > ��, p > 0,

np=�E�;�(V
p
n )!

C�;�

C�;�+p
(49)

where C�;� is de�ned by (42), and the right side of (49) is the pth moment
of the P�;� almost sure limit of n1=�Vn, that is L1=�. Note from (41) that
the P�;� distribution of L has a strictly positive density f�;� on (0;1) given

15



by f�;�(`) = C�;�`
�=�f�;0(`) where f�;0(`) is determined by the Mittag-Le�er

density of the P�;0 distribution of �(1 � �)L, as discussed below (29).
By passage to the limit as �! 0 (see Section 5.2), we recover the known

formula for pd(0; �) :

Corollary 17 [54, 64, 23, 43]

E0;�(V
p
n ) =

�(�)

�(� + p)

�n

�(n)

Z 1

0
dt tp�1e�tE(t)n�1e��E(t) (50)

where E(t) =
R1
t x�1e�xdx.

The P�;� distribution of Vn on [0; 1] is not easy to describe explicitly.
There is however the following implicit description for n = 1:

Proposition 18 The P�;� density of V1 is uniquely determined for all 0 �
� < 1 and � > �� by the following identity:

P�;�(V1 2 dx)=dx =
�(� + 1)

�(� + �)�(1 � �)
x���1(1�x)�+��1P�;�+�(V1 < x=(1�x))

(51)

The special case of (51) with � = 0 and � = 1 appears as equation (3) of
Vershik [57], attributed to Dickman [13]. See also [63, 24, 43] for alternative
approaches to computation of the distribution of V1 for pd(0; �) and Lamperti
[37] for a di�erent functional equation that determines the distribution of
1=V1 for pd(�; 0). In Section 8.1 a formula of Perman [43] is applied to obtain
an expression for the P�;� joint density of V1; � � � ; Vn for 0 < � < 1; � > ��
which is analogous to known results for pd(0; �) [6, 58, 32]. In particular,
this approach yields the following extension of results in Section 4 of [43] for
the cases � = 0 and � = �. To simplify notation, let �u = 1� u.

Proposition 19 For all 0 � � < 1 and � > ��

P�;�(V1 2 du)=du =
1X
1

(�1)n+1cn;�;� �u
�+��1

u�+1
In;�;�(u) (0 < u < 1) (52)

where In;�;�(u) = 0 if u > 1=n, so all but the �rst n terms of the sum are
zero if u > 1=(n + 1), I1;�;�(u) = 1, and for n = 2; 3; � � � and 0 < un � 1=n,
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In;�;�(un) is the (n� 1)-fold integral

In;�;�(un) =
Z 1=(n�1)

un=�un
dun�1

�u2�+��1n�1

u�+1n�1

Z 1=(n�2)

un�1=�un�1
dun�2

�u3�+��1n�2

u�+1n�2

� � �
Z 1

u2=�u2
du1

�un�+��11

u�+11

(53)
and cn;0;� = �n while for 0 < � < 1; � > ��

cn;�;� =
�(� + 1)�( �

�
+ n)�n�1

�(� + n�)�( �
�
+ 1)�(��)n

(54)

For 1=2 < u < 1 there is only one positive term in (52), and the formula
reduces to (51). For 1=3 < u � 1=2 there are two non-zero terms in (52).
This formula appears in the bridge case � = � at the bottom of page 278 of
[43], but with a typographical error: 2��(�) should be replaced by 2�2�(�).

To illustrate using Proposition 6, for � = � = 1=2, Proposition 19 de-
scribes the density of the length V1 of the longest excursion of a Brownian
bridge. Explicit integration is possible in this case at least for n = 1; 2; 3 to
obtain

P1=2;1=2(V1 2 du)=du = q1(u)� q2(u) + q3(u) for 1=4 < u < 1 (55)

where the qn(u) are given for 0 < u < 1 and n = 1; 2; 3 by

q1(u) =
1

2
u�3=2 (56)

q2(u) = 1(u � 1=2)
1

�
u�3=2

0
@�� + 2

s
1� 2u

u
+ 2arcsine

s
u

1� u

1
A (57)

q3(u) = 1(u � 1=3)
3

4�
u�3=2

0
@2 + 2� +

2

u
� 8

s
1 � 2u

u
� 8 arcsine

s
u

1 � u

1
A
(58)

See also Wendel [65] for another expression for the P�;� distribution of V1
based on a method of Ros�en, and see Knight [35] for related results.

3.3 A subordinator representation for 0 < � < 1; � > 0

In view of Propositions 4 and 5, it is natural to look for a representation of
pd(�; �) as the distribution of the sequence 

V1(T )

T
;
V2(T )

T
; � � �

!
(59)
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derived as in (6) from the ranked lengths Vn(T ) of component intervals of the
set [0; T ]nZ, where Z is the closure of the range of a suitable subordinator
(� s; s � 0), and T is a suitably de�ned random time. Such a representation
is provided by the following Proposition. We write e.g. � (s) instead of �s
when typographically convenient.

Proposition 20 Fix � with 0 < � < 1, and C > 0. Let (� s; s � 0) be a
subordinator with L�evy measure �Cx���1e�xdx: Independent of (� s; s � 0),
let ((t); t � 0) be a gamma subordinator as de�ned below (7). For � > 0 let

S�;� =
(�=�)

C�(1 � �)
(60)

Then for T = � (S�;�) the sequence (59) has pd(�; �) distribution, indepen-
dently of T , which has the same gamma(�) distribution as �.

Notice that in contrast to the formula of Proposition 13, all objects ap-
pearing in the above proposition have sensible limits as � ! 0 for �xed
�. Take C so that �C ! 1 as � ! 0. Then as � ! 0, the L�evy mea-
sure �Cx���1e�xdx of the subordinator (� s) approaches the L�evy measure
x�1e�xdx of a gamma process, while S�;� converges in probability to the con-
stant � by the law of large numbers. So in the limit as � ! 0 we recover
Kingman's representation of pd(0; �) stated in Proposition 4.

Proposition 20 is closely related to the following result, originally obtained
by an entirely di�erent argument. See also Proposition 31 below.

Corollary 21 [47] For 0 < � < 1 and � > 0, suppose (Un) has pd(0; �)
distribution, and independent of (Un) let (Vmn), m = 1; 2 � � � be a sequence of
independent copies of (Vn) with pd(�; 0) distribution. Let (Wn) be de�ned by
ranking the collection of products fUmVmn;m 2 N; n 2 Ng. Then (Wn) has
pd(�; �) distribution.

4 Development for pd(�; 0)

4.1 Proofs of the main results

We will prove Proposition 9 �rst, then Proposition 7. Otherwise the proofs
are in the same order as the propositions.
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Proof of Proposition 9. It is enough to establish the assertions (i), (ii)
and (iii) of the Proposition for any particular sequence (Vn) with pd(�; 0)
distribution. So use Vn := Vn(�1)=�1 for a stable (�) subordinator (�s) as in
12. We �rst verify a modi�ed form of the assertions (i),(ii) and (iii) in this
case, with the de�nitions (24) replaced by

L := C���1 ; � := �1; �n := Vn(�1): (61)

The modi�ed form of (ii) follows from the fact that the Vn(�1) are the ranked
points of a prm ��(dx) on (0;1). The modi�ed form of (iii) follows by
the usual change of variables to reduce the inhomogeneous prm ��(dy) on
(0;1) to a homogeneous prm dx on (0;1). Now (23) with a.s. convergence
and L = C���1 follows because Xn=n ! 1 a.s. by the law of large numbers.
(This argument is due to Kingman [33]: our formula (23) is his (68)). See
Section 4.3 for justi�cation of the convergence (23) in pth mean. Tracing
back through these de�nitions shows that the r.v's de�ned in (61) can be
recovered a.s. from L via (24). Thus (i),(ii) and (iii) hold for any (Vn) with
pd(�; 0) distribution. 2
Proof of Proposition 7. By de�nition of Rn and the notation in Proposi-
tion 9,

Rn :=
Vn+1
Vn

=
�n+1

�n
=

 
Xn

Xn+1

! 1

�

(62)

Thus Proposition 7 reduces by a simple change of variables to the following
elementary property of the points 0 < X1 < X2 < � � � of a homogeneous
Poisson process on (0;1): theXn=Xn+1 are mutually independent beta (n; 1)
variables. 2

We record for later use the following result, which is easily obtained by
examination of the above proof:

Corollary 22 In the setting of Proposition 9, for each n = 1; 2; � � � the ran-
dom vector (R1; : : : ; Rn) is independent of the random sequence (Xn+1;Xn+2; � � �).
The previous argument shows that for all � > 0 formula (35) gives the
Laplace transform of An de�ned by the last expression in (30) for a sequence
of independent beta (n�; 1) distributed random variables (Rn), or by (64) in
terms of �n as in Lemma 23. However, the distribution of �n is of interest
only for 0 < � < 1, as it is easily seen that �n =1 a.s. for � � 1.

The following Lemma serves as a basis for further calculations.
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Lemma 23 Let �1 > �2 > � � � be the ranked points of a prm ��(dx) on
(0;1), where ��(x;1) = Cx�� for some � > 0 and C > 0. Then

(i) C���
n has gamma(n) distribution;

(ii) for n � 2 the n� 1 ratios

�1

�n

>
�2

�n

> � � � > �n�1

�n

are distributed like the order statistics of n � 1 independent random
variables with common distribution C�1��(dx)1(x > 1), independently
of �n;�n+1; � � �

(iii) conditionally given �1; � � � ;�n for n � 1, the

�n+1

�n
>

�n+2

�n
> � � �

are the ranked points of a prm ���
n ��(dx)1(x < 1):

Proof. Basic properties of Poisson processes imply that conditionally given
�n = a, for n � 2 and a > 0, the �1 > �2 > � � � > �n�1 are distributed
like the order statistics of n� 1 independent random variables with common
distribution ��(a;1)�1��(dx)1(x > a); and conditionally given �1; � � � ;�n

for n � 1 with �n = a, the �n+1 > �n+2 > � � � are the ranked points of a
prm ��(dx)1(x > a): Since under the transformation u = x=a the image of
the measure ��(dx) is a����(du), the assertions of the Lemma follow easily.
2

Proof of Proposition 9. Represent the pd(�; 0) distributed sequence (Vn)
in terms of the points �n of a prm �� as in Proposition 9. So

1

Vn
=

�1 + � � �+�n�1

�n
+
�n

�n
+
�n+1 +�n+2 + � � �

�n
= An�1 + 1 + �n (63)

For n � 2 there is the representation

An�1 =
�1

�n
+

�2

�n
+ � � �+ �n�1

�n
(64)

where the (�i=�n; 1 � i � n � 1) are distributed as the ranked values of
n� 1 independent random variables with the same distribution as A1. Thus
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An is distributed like the sum of n such independent copies of A1, which has
distribution

P (A1 2 dx) = C�1��(dx)1(x > 1) = �x���1dx1(x > 1) (65)

This yields Part (i). Consider now �n de�ned by (31). Part (iii) of Lemma
23 represents �n conditionally given �1; � � � ;�n as the sum of points of a
prm ���

n ��(dx)1(x < 1), whence

E[exp(���n)j�1; � � � ;�n] = exp
�
����

n

Z 1

0
(1 � e��u)��(du)

�
(66)

Integration with respect to the gamma (n) distribution of C���
n yields (36),

which establishes (ii). Finally, the independence claimed in part (iii) follows
from the independence assertion in part (ii) of Lemma 23. 2

The following conditional form of Wendel's formula (37) proves useful in
later calculations:

Proposition 24 Suppose (Vn) has pd(�; 0) distribution. Let (Xn),(Rn),
and (An) be derived from (Vn) as in (26), (20), and (30). The conditional
law of Vn given R1; � � � ; Rn�1 and Xn is characterized by

E

"
exp

 
� �

Vn

!
j R1; � � � ; Rn�1;Xn

#
= exp(��(1+An�1)) exp[�Xn( �(�)�1)]

(67)

Proof. Represent (Vn) in terms of the points (�n) of a P.R.M. �� as in
(25). Note that �(R1; � � � ; Rn�1;Xn) = �(�1; � � � ;�n) and use (34), (66),
and ���

n = Xn=C. 2
Consider now Hn derived as in (38) from the range of a stable (�) sub-

ordinator. Note that at time Hn the nth longest excursion interval that
currently has length 1 is necessarily the meander interval. That is to say:
GHn = Hn � 1, where for t � 0 we set

Gt = sup(Z \ [0; t)); Dt = inf(Z \ [t;1)) (68)

Notice that Hn is just the nth instant t such that t�Gt = 1, so

0 < GH1
< DH1

< GH2
< DH2

< � � � < GHn�1
< DHn < GHn+1
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and there is the natural decomposition

Hn =
nX
j=1

(GHj
�DHj�1

) +
n�1X
j=1

(DHj
�GHj

) + (Hn �GHn) (69)

where DH0
= 0 by convention, and the last term is Hn�GHn = 1. As shown

by Wendel, formula (37) follows from the identity in distribution (39) and
the observation that the �rst sum on the right side of (69) is a sum of n
independent terms with

GHj
�DHj�1

d
= GH1

d
= �1 (1 � j � n) (70)

while the n � 1 terms of the second sum are independent with

DHj
�GHj

d
= A1 (1 � j � n� 1) (71)

where �1 and A1 are as in Proposition 10. These observations can be checked
by repeated application of the strong Markov property at the timesHDj

, and
the Poisson character of excursion interval lengths. Note that the Vj(Hn) for
1 � j � n � 1 are the ranked values of the i.i.d. interval lengths DHj

�
GHj

; 1 � j � n� 1, while Vn(Hn) = 1.
Proof of Proposition 12. The Poisson character of the interval lengths
on the local time scale implies that for each �xed n the distribution of
(Vm(Hn);m = 1; 2; � � �) can be described as follows:

(i) Vn(Hn) = 1;

(ii) for 0 < m < n the Vm(Hn) are distributed like the order statistics of
m� 1 independent r.v's with distribution C�1��(dx)1(x > 1);

(iii) independent of the Vm(Hn) for 0 < m < n, the multiple of the local
time CSHn has a gamma (n) distribution;

(iv) given SHn and the Vm(Hn) for 0 < m < n, the Vm(Hn) for n < m <1
are distributed as the ranked points of a prm SHn��(dx)1(x < 1).

On the other hand, Lemma 23 shows that the same four statements hold if
the following substitutions are made:

replace Vm(Hn) by �m=�n and replace SHn by ���
n
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where the �n are the ranked points of a prm ��(dx). Therefore, for each
�xed n = 1; 2; � � �, 

Vm(Hn)

Vn(Hn)
;m = 1; 2; � � �

!
d
=
�
�m

�n
;m = 1; 2; � � �

�
(72)

The distribution of the sequence in (40) is now identi�ed as pd(�; 0) using
Proposition 9 (ii). 2

4.2 A di�erential equation related to �� and  �.

A proof of (35) can also be obtained using the recurrence relation

An = (1 +An�1)=Rn (73)

and the fact that

e���(�) = E
�
exp��

�
1

R1
� 1

��
(74)

solves the di�erential equation

� = (�+ �)f(�) � �f 0(�): (75)

Another solution of (75) is the function

e� �(�) =
�
E
�
exp��

�
1

V1

����1
(76)

In fact, all solutions of (75) are given by the formula

f(�) = ��e�
"
c+ �

Z 1

�

dxe�x

x�+1

#
(77)

where c = lim�!1 ���e��f(�) is an arbitrary constant. Hence, e���(�) is
the solution of (75) with c = 0, whereas e� �(�) is the solution of (75) with
c = �(1 � �), in agreement with formula (33). It can also be checked that
the fact that e� �(�) solves (75), together with the recurrence

�n = Rn(1 + �n+1); (78)

is in agreement with formula (36). But, in contrast with the situation for
(35), it seems di�cult to prove (36) from this approach.
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4.3 Some Absolute Continuity Relationships

For (Xn) the points of a homogeneous Poisson process on (0;1) with rate 1
there is the elementary absolute continuity relation

E[f(Xm+1;Xm+2; � � �)] = 1

m!
E[Xm

1 f(X1;X2; � � �)]; (79)

where f is a generic positive measurable function of its arguments. For Rn

as in (62), a change of variables yields

E[f(Rm+1; Rm+2; � � �)] = 1

m!
E[Xm

1 f(R1; R2; � � �)]; (80)

where by a paraphrase of (23)

X1 = lim
n!1

n(R1R2 � � �Rn)
� a.s. (81)

On the other hand, a direct calculation of the density ratio using Proposition
7 shows that

E[f(Rm+1; Rm+2; � � � ; Rm+n)] =

 
n+m

m

!
E[(R1R2 � � �Rn)

m�f(R1; R2; � � � ; Rn)]

(82)
Comparison of (80) and (82) shows that

E
�
Xm

1

m!
jR1; : : : ; Rn

�
=

 
n+m

m

!
(R1R2 � � �Rn)

m� (83)

SinceX1 has �nite moments of all orders, martingale convergence shows that
the a.s. convergence in (81) takes place also in pth mean for every p > 0. It
follows easily that the same is true of the a.s. convergence in (23).

5 Development for pd(�; �)

5.1 Proofs of some results

Proof of Proposition 16. Combine Proposition 13 and the following
Lemma. 2
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Lemma 25 Suppose (Vn) has pd(�; 0) distribution, and let L = limn nV
�
n

as in (23). Then for all real ` > �1 and p > 0, and n = 1; 2 � � �

E[L` V p
n ] =

�(` + n)

�(n)�(p + `�)

Z 1

0
dt tp+`��1e�t��(t)

n�1 �(t)
�`�n (84)

Proof. We will use the following standard expression for negative moments
of a positive random variable X in terms of its Laplace transform: for p > 0,

E[X�p ] =
1

�(p)

Z 1

0
dt tp�1E[ e�tX ]; (85)

Combined with Wendel's formula (37), this immediately yields the special
case of (84) with ` = 0. Recall that Xn := LV ��

n . Then the left side of (84)
is

E[L` V p
n ] = E(X`

n V
p+`�
n ) = E

"
X`
n

1

�(p + `�)

Z 1

0
dt tp+`��1E[exp(�t=Vn) j Xn]

#

by using (85). Now use (67), and the fact thatXn has gamma (n) distribution
independent of An�1 to obtain by elementary integration

E[L` V p
n ] =

1

�(n)�(p + `�)

Z 1

0
dt tp+`��1e�t�(`+n) �(t)

�`�nE[exp(�tAn�1)]

Here, for n = 1, A0 = 0. Now use (35) to obtain (84). 2

Remark 26 Consider (84) for p = 0; ` > 0. Since the left side does not
depend on n, neither does the right, something which is not evident a priori.
This can be shown to be equivalent to the Wronskian identity

(�� 
0
� �  ��

0
�)(t) = ��(1 � �)e�tt��1 (86)

which follows from the description of �� and  � in terms of the di�erential
equation (75).

Further moment formulae. Suppose (Vn) has pd(�; 0) distribution. Let
L;Xn; Rn; An and �n be the random variables de�ned in terms of (Vn) as in
(23), (26), (20), (30), and (31).
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As a �rst variant of (84), we can compute similarly

E[L` V p
n exp(��=Vn)] = E[X`

n V
p+`�
n exp(��=Vn)]

= E[X`
n �(p+ `�)�1

Z 1

0
dt tp+`��1E[ exp(�(t+ �)=VnjXn ]

Using (67) and then (35) again, with t+ � instead of �, yields

E[L` V p
n exp(��=Vn)] =

�(` + n)

�(n)�(p + `�)

Z 1

0
dt tp+`��1e�t����(t+�)

n�1 �(t+�)
�`�n

(87)
Proof of Proposition 15. This follows easily from Propositions 7 and 13
using the following Lemma, which states another variant of (84):

Lemma 27 Suppose (Vn) has pd(�; 0) distribution. Let L := limn!1 nV �
n

as in (23), and let Rn := Vn+1=Vn. For all real ` > �1 and  > 0, and
n = 0; 1; 2 � � �

E[L` V ��`
1 j R1; : : : ; Rn] =

1

n!

0
@ nY
j=1

Rj

1
A`��

��(` + n; ;An) (88)

for An as in (30) and ��(`; ; a) as in (47).

Proof. Let Rn = �(R1; : : : ; Rn). Elementary manipulations show that

E[L` V ��`
1 jRn] =

0
@ nY
j=1

Rj

1
A`��

E[(L=V �
n+1)

` V 
n+1 j Rn] (89)

Now use (85) for p =  and X = 1=Vn+1 to express the right side of (89) as:

0
@ nY
j=1

Rj

1
A
`��

1

�()

Z 1

0
dt t�1f� � �g

where
f� � �g = E[(L=V �

n+1)
` E[exp(�t=Vn+1) j Rn;Xn+1] j Rn]

and Xn+1 := LV ��
n+1. Now use formula (67) to show that

f� � �g = E[X`
n+1 exp(Xn+1(1 �  �(t))] exp(�t(1 +An))
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= exp(�t(1 +An))
�(n + `)

n!
( �(t))

�(`+n+1)

by the independence of An and Xn+1 (see Corollary 22 and (30)) and ele-
mentary integration with respect to the gamma(n+1) distribution of Xn+1.
This yields formula (88) with �� de�ned by (47). The second equality in
(47) is easily obtained by another manipulation like (85). 2

Remark 28 It is also possible to derive (88), with �� de�ned by the second
expression in (47), by starting from Perman's formula for the joint density
of �; V1; � � � ; Vn+1 stated in Proposition 45, and making suitable changes of
variables and integrating out � and V1.

Proof of Proposition 18 For ( ~Vn) the size-biased permutation of (Vn) as
in De�nition 1 and Proposition 2, we can compute P�;�(V1 2 dx; V1 = ~V1) in
two di�erent ways. First, by conditioning on V1 and using (2),

P�;�(V1 2 dx; V1 = ~V1) = xP�;�(V1 2 dx) (90)

But conditioning instead on ~V1, and using the consequence of (4) that the P�;�
distribution of ( ~V 2; ~V 3; � � �)=(1 � ~V 1) is identical to the P�;�+� distribution
of ( ~V 1; ~V 2; � � �) yields

P�;�(V1 2 dx; V1 = ~V1) = P�;�( ~V1 2 dx;max
n�2

~Vn < x)

= P�;�( ~V1 2 dx)P�;�(max
n�2

~Vn

1� ~V1
<

x

1� x
j~V1 = x)

=
�(� + 1)

�(� + �)�(1 � �)
x��(1� x)�+��1dxP�;�+�(V1 < x=(1� x)) (91)

Now comparison of (90) and (91) yields (51). For 1=2 < x < 1 it is obvious
that P�;�+�(V1 < x=(1 � x)) = 1, so (51) determines the P�;� density of
V1 at x for 1=2 < x < 1. (This case of (51) can also be read from (5)).
Recursive application of (51) now determines the P�;� density of V1 at x for
1=(n + 1) < x < 1=n, n = 2; 3; � � �. 2
Proof of Proposition 20. Let K = C�(1 � �). Let (�s) be a stable(�)
subordinator with E[exp(���s)] = exp(�K��s). Then for each s > 0 and
every positive measurable functional F ,

E[F (� t; 0 � t � s) ] = eKsE[F (�t; 0 � t � s) exp(��s) ] (92)
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Let (V1; V2; � � �) denote a sequence with pd(�; �) distribution. Let L be the
local time variable derived from (V1; V2; � � �) as in (23), and � = (C=L)1=�.
From Propositions 13 and 9, the conditional law of (V1; V2; � � �) given � = t
does not depend on �, call it pd(�j t) say:

pd(�j t) = the conditional law of
�
�1

�1
;
�2

�1
; � � �

�
given �1 = t (93)

where �1 > �2 > � � � are the ranked jumps of (�s; 0 � s � 1). Then from
(43)

pd(�; �) = c�;�

Z 1

0
pd(�j t)t��P (�1 2 dt): (94)

The �nite dimensional distributions of pd(�j t) are described by Perman's
formula (152), but this description is not required in the following argument.

Let

Ws =

 
V1(� s)

� s
;
V2(� s)

� s
; � � �

!

From (92) we learn that if � is a positive random variable independent of
(� s; s � 0), then

the conditional law of W� given � and � � is pd(�j � �=�1=�) (95)

no matter what the distribution of �. Consequently

� and W� are conditionally independent given � �=�1=�. (96)

From (94) and (96), it now su�ces to show that for � = K�1(�=�) the
following three things are true:

P [ � �=�
1=� 2 dt ] = c�;� t

��P (�1 2 dt) (97)

� � has gamma(�) distribution (98)

� �=�
1=� and � � are independent; (99)

But (97), (98) and (99) follow at once from the next Lemma applied with
h(z) = czb for b = (�=�)� 1 and a constant c.

28



Lemma 29 Let (� s; s � 0) be as in Proposition 20 and let � be a random
variable independent of (� s; s � 0) with density of the form

P (� 2 dz)=dz = h(z) exp(�Kz) (100)

for some function h(z). Then for t > 0; u > 0

P

 
� � 2 du; � �

�1=�
2 dt

!
= �e�u

u��1

t�
h
��

u

t

���
duP (�1 2 dt) (101)

Proof. Conditioning on � = z, there is the following identity for all positive
measurable functions f and g:

E[ f(� �)g(� �=�
1=�) j � = z ] = E[ f(� z)g(� z=z

1=�) ]

= exp(Kz)E[ f(z1=��1)g(�1) exp(�z1=��1) ]
by (92) and the scaling property of the stable subordinator (�s; s � 0).
Integrate with respect to the distribution (100) of � to obtain

E[ f(� �)g(� �=�
1=�)] =

Z 1

0
dz h(z)E[ f(z1=��1)g(�1) exp(�z1=��1) ]

= E

"Z 1

0
du�e�u

u��1

��1
h
��

u

�1

���
f(u)g(�1)

#
(102)

by Fubini's theorem and the change of variable

u = z1=��1; z = (u=�1)
�; dz = �(u��1=��)du:

Now (102) amounts to (101). 2

Remark 30 Conversely, formula (101) shows that if any of (97), (98) or (99)
holds, the function h(z) introduced in (100) must be of the form h(z) = czb,
that is K� must have gamma (b) distribution for some b > 0. Consider for
instance (99). From (101), for (99) to be satis�ed, it is necessary that

h(u=v) = j(u)k(v); du dva.e.

for some functions j and k, hence that

h(uw) = c h(u)h(w); du dwa.e.

which forces h(u) = cub for some c and b.
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Proof of Proposition 21. Proposition 21 follows from Proposition 20 and
the next Proposition, which in fact allows either of Propositions 21 or 20 to
be derived easily from the other.

Proposition 31 In the setting of Proposition 20, let �t = K�1(t), where
K = C�(1��), and let S1 > S2 > � � � denote the ranked values of the jumps
of (�t; 0 � t � �=�), say Si = ��i � ��i� where �i is the time of jump of
magnitude Si. Let Ti = � (��i)� � (��i�) Then

(i) the (Si; Ti); i = 1; 2 � � � are the points of a prm with intensity measure

M(ds; dt) =
�

�

ds

s
fs(t)e

�tdt = �
dt

t
e�tgt(s)ds (103)

where fs(t) = P (�s 2 dt)=dt and gt(s) = P (St 2 ds)=ds where (St; t � 0) is
the inverse of the stable (�) subordinator (�s; s � 0).

(ii) Let T�(i) be the ith largest of the jumps Ti; i = 1; 2; � � � : Then
 

T�(i)
� (��=�)

; i = 1; 2; : : :

!
has pd(0; �) distribution

independently of the gamma (�) variable
P

i Ti = � (��=�)
(iii) if �i1 > �i2 > � � � are the ranked jumps of (� s) incurred over the

s-interval whose length is S�(i), then for each i the sequence 
�ij

T�(i)
; j = 1; 2; : : :

!
has pd(�; 0) distribution

Moreover these sequences are mutually independent as i varies, and indepen-
dent also of the sequence (T�(i); i = 1; 2; : : :), where

T�(i) = �i1 +�i2 + � � � and �(��=�) =
X
i

T�(i) =
X
i

X
j

�ij

and the Vn(��=�) featured in Proposition 20 are the ranked values of the �ij.

Proof. Due to the Poisson character of the jumps of the two independent
subordinators, the points (Si; Ti); i = 1; 2 � � � are the points of a prm with
intensity measure

M(ds; dt) =
�

�

ds

s
exp(�Ks)P (� s 2 dt) (104)
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which can be expressed as in (103) using (92) and the formula fs(t) =

�sgt(s)=t which is a consequence of the identity in distribution St=t�
d
= s=��s

(see e.g. Section 7 of Pitman-Yor [50]). This yields (i). Since
R1
0 gt(s)ds = 1,

the Ti are the points of a prm �t�1e�tdt over t > 0. So (ii) follows from
Proposition 4. Turning to (iii), the last expression for M(ds; dt) in (104),
combined with standard facts about Poisson processes, shows that condition-
ally given all the T�(i), the corresponding jumps S�(i) of the gamma process
(�t; 0 � t � �=�) are mutually independent, with

P (S�(i) 2 ds jT�(i) = t) = gt(s)ds

Now (iii) follows using (95) and (94) for � = 0. 2

5.2 Limits as �! 0

Let P denote the space of probability measures on [0; 1] � [0; 1] � � � �, and
give P the topology of weak convergence of �nite dimensional distributions.
It is immediate from De�nition 1 that the P�;� distribution of ( ~V n) de�nes a
continuous map from f(�; �) : 0 � � < 1; � > ��g to P. As a consequence
[16], the same is true of the P�;� distribution of (Vn). That is to say, pd(�; �) is
continuous in (�; �). In particular, for each � > 0 the limit of pd(�; �) as
� # 0 is pd(0; �) . That is, for every bounded continuous function f de�ned
on [0; 1]n,

lim
�#0

E�;�[f(V1; � � � ; Vn)] = E0;�[f(V1; � � � ; Vn)] (105)

Proposition 20 provides a setting in which (105) follows from weak conver-
gence as � # 0 of a subordinator with L�evy measure x���1e�xdx to a gamma
process with L�evy measure x�1e�xdx. See Vershik-Yor [56] for further discus-
sion, and Brockwell-Brown [9] for other aspects of the asymptotic behaviour
of a stable � subordinator as � # 0.

To illustrate (105), we now derive the known formula for E0;�(V p
n ) for

p > 0 given in Corollary 17 from the corresponding formula for E�;�(V p
n )

with 0 < � < 1 stated in Proposition 16.
Derivation of Corollary 17 from Proposition 16. The evaluation of
the limit is justi�ed by the following asymptotics as �! 0:

�(1 � �)
�
� � (1 + �)

�
� ! e�� (106)
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where a(�) � b(�) means a(�)=b(�)! 1,

 = ��0(1) (107)

is Euler's constant, and
�( �

�
+ n)

�( �
�
+ 1)

� �n�1

�n�1
(108)

The factor of �n�1 in the denominator is asymptotically cancelled inside the
integral, by the factor

��(t)
n�1 =

�
�t�

Z 1

t
dxx���1e�x

�n�1
� �n�1E(t)n�1 (109)

Finally, in view of (107) and (109) for n = 2, formula (33) implies

 �(t)� 1 � �(E(t) +  + log(t)) (110)

and consequently

 �(t)
�n� �

� ! e�E(t)��log(t) = t��e�e�E(t) (111)

It is easily argued that these limiting operations can be switched with the
integral in (48), and (50) results after some cancellation. 2

6 Sampling from pd(�; �)

Applications of a random discrete distribution (Vn) often involve a sample
from (Vn) that is a random variable N such that the conditional distribution
of N given (Vn) is given by

P (N = njV1; V2; � � �) = Vn (n = 1; 2; � � �) (112)

Then VN is a size-biased pick from (Vn), as in (2). See for instance [64, 23]
for a nice interpretation of N in the application of pd(0; �) to population
genetics.
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6.1 Deletion and insertion operations

Given a sequence (vn) and an index N , say (v0n) is derived from (vn) by
deletion of vN if

v0n = vn1(n < N) + vn+11(n � N):

The following Proposition follows immediately from Proposition 2:

Proposition 32 Let N be a sample from (Vn) with pd(�; �) distribution,
where 0 � � < 1 and � > ��. Let (V 0

n) be derived from (Vn) by deletion
of VN , and let V 00

n = V 0
n=(1 � VN ); n = 1; 2; � � �. Then (V 0

n) has pd(�; � + �)
distribution, independently of VN , which has beta (1 � �; � + �) distribution.

In particular the pd(0; �) distribution is invariant under this operation of
size-biased deletion and renormalization, a result which is a known charac-
terization of pd(0; �) [41, 27].

Suppose a pd(�; 0) distributed sequence (Vn) has been constructed by
any of the methods described in Section 2. By the operation of size-biased
deletion and renormalization as above we obtain a sequence with pd(�;�)
distribution. Repeating the operation yields sequences with distributions
pd(�; 2�), pd(�; 3�); � � �.

This result about deletion can be rephrased as a result about insertion:
given (v01 � v02 � � � �) and a real number v > infn v0n, say (vn) is derived from
(v0n) by insertion of v if

vn = v0n1(n < N) + v1(n = N) + v0n+11(n > N):

where N � 1 =
P1

n=1 1(v
0
n > v) is the number of terms of (v0n) that strictly

exceed v. Note that vN = v by de�nition.

Proposition 33 Fix 0 � � < 1 and � > ��. Let (V 00
n ) have pd(�;� + �)

distribution. Independent of (V 00
n ) let X have beta (1��; �+�) distribution.

Let (Vn) be de�ned by insertion of X into ((1 � X)V 0
n; n = 1; 2; � � �). Then

(Vn) has pd(�; �) distribution, and X = VN where N is a sample from (Vn).

6.2 Distribution of a sample from pd(�; �)

Immediately from (111), the unconditional distribution of a sample N from
(Vn) with pd(�; �) distribution is given by P�;�(N = n) = E�;�(Vn) as spec-
i�ed in formulae (48) and (50) for p = 1. For pd(0; �) this result is due to
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Gri�ths [23]. Inspection of formula (50) for p = 1 shows that Gri�ths' result
can be restated as follows:

for N a sample from pd(0; �) , the distribution of N �1 is a mix-
ture of Poisson (�) distributions, with the parameter � given the
distribution of ��(T;1), where �(dx) = x�1e�xdx is the L�evy
measure of a gamma subordinator, and T is a standard exponen-
tial variable.

This result can be understood probabilistically as follows, by application of
Propositions 4 and 33. Take (V 00

n ) in Proposition 33 to be the pd(0; �) sequence
V 00
n = Vn(��)=�� derived from a gamma subordinator (�s; 0 � s � �) as in (9).

Let X = T=(T + ��) for T a standard exponential independent of (�s), and
let (Vn) be constructed as in Proposition 33. Let N be the rank of X in (Vn).
According to Proposition 33, N is a sample from the pd(0; �) sequence (Vn).
But by construction, N � 1 is the number of n such that Vn(��) > T , and
given T this number has Poisson distribution with mean ��(T;1).

The analog for 0 < � < 1 of the above result for pd(0; �) is the subject
of the next proposition:

Proposition 34 For each 0 < � < 1; � > �� the P�;� distribution of N�1 is
an integral mixture of negative binomial distributions with parameters �

�
+ 1

and p, with a mixing distribution over p which depends only on �. More
precisely, for each m = 0; 1; � � �

P�;�(N�1 = m) = E�;�(Vm+1) =
Z 1

0
P (Z1�� 2 dz)

 
�
�
+m

m

!
(1�p�(z))mp�(z) ��+1

(113)
where Z1�� has gamma(1 � �) distribution, and

p�(z) =
 �(z)� ��(z)

 �(z)
=

�(1 � �)z�

 �(z)
(114)

is such that 0 < p�(z) < 1 for all 0 < � < 1 and z > 0.

Proof. This can be obtained either by manipulation of formula (48) for
p = 1, or more probabilistically by application of Proposition 33, as in the
case � = 0 discussed above, using the construction of Proposition 20 instead
of Proposition 4. 2
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From (113) and the formula r(1 � p)=p for the mean of the negative
binomial (r; p) distribution, for 0 < � < 1; � > �� there is the following
formula for the mean of N :

E�;�(N) = 1 + (1 + �
�
)�(1� �)�2

Z 1

0
dz z�2�e�z��(z) (115)

which is linear in � for �xed � < 1
2
, and in�nite for all � > �� if � � 1

2
.

Formulae for higher moments of N follow similarly, while asymptotics for
P�;�(N = n) and P�;�(N � n) for large n are immediate from (49).

The next two subsections illustrate two interesting special cases of Propo-
sition 34 with natural interpretations in terms of excursions of a Brownian
motion or Bessel process. We thank Yuval Peres and Steve Evans for a
conversation which helped us develop these interpretations.

6.3 The rank of the excursion in progress

Consider the set up of Section 1.2, with Z the range of a stable(�) subordi-
nator, and Vn(t) the length of the nth longest interval component of [0; t]nZ.
So Z could be the zero set of Brownian motion (� = 1

2), or a recurrent Bessel
process of dimension 2�2� for 0 < � < 1. Let Nt be the rank of the meander
length t � Gt in the sequence of excursion lengths V1(t) > V2(t) > � � �, so
t�Gt = VNt(t). According to Theorem 1.2 of [50], for each �xed time t the
random variable Nt is a sample from (Vn(t)=t). Combined with (13), this
shows that the joint law of Nt and the sequence (Vn(t)=t) is given by the
formula

E

"
1(Nt = n) f

 
V1(t)

t
;
V2(t)

t
� � �
!#

= E�;0[Vnf(V1; V2; � � �)] (116)

for all n = 1; 2 � � � and all non-negative product measurable functions f .
Here E denotes expectation relative to P governing the stable(�) subordi-
nator (�s), and E�;0 denotes expectation relative to P�;0 governing (Vn) with
pd(�; 0) distribution. In particular, from Proposition 34 for 0 < � < 1 and
� = 0 we obtain for all t > 0

P (Nt = n) =
Z 1

0
dz e�z��(z)

n�1 �(z)
�n (117)

35



This is a companion of a result of Sche�er [53], which can be expressed in
present notation as follows:

P (NDt = n) = �
Z 1

0
dz z�1(1 � e�z)��(z)

n�1 �(z)
�n (118)

Here Nt � 1 is the number of excursions completed by time t whose lengths
exceed t�Gt, while NDt � 1 is the smaller number of such excursions whose
lengths exceed the length Dt � Gt of the excursion straddling time t, for
Gt and Dt de�ned in (68). Formula (118) is a consequence of the following
analog of (116), established in [51],

E

"
1(NDt = n) f

 
V1(Dt)

Dt
;
V2(Dt)

Dt
� � �
!#

= E�;0[�� log(1� Vn)f(V1; V2; � � �)]
(119)

which for f = 1 gives

P (NDt = n) = E�;0[�� log(1 � Vn)] = �
1X
p=1

1

p
E�;0[V

p
n ] (120)

Evaluating E�;0[V p
n ] using (48) now yields (118). Using (119) and (49) we

obtain the following asymptotic formulae as n!1:

P (NDt = n) � �P (Nt = n) � ��( 1
�
+ 1)

�(1� �)1=�
1

n1=�
(121)

where a(n) � b(n) means a(n)=b(n) ! 1 as n ! 1. To illustrate, in the
Brownian case (� = 1

2) the numerical values in the following table were ob-
tained using a four line Mathematica program which evaluated the integrals
(117) and (118) numerically after de�nition of �� and  � in terms of Math-
ematica's incomplete gamma function. The numerical values for NDt agree
with those of Sche�er [53]. The asymptotic formulae as n!1 are read from
(121). For n = 4 the asymptotic formula gives the approximations 0:0398
and 0:0199, which are already very close to the values of P (Nt = 4) and
P (NDt = 4) shown in the table.

Distribution of Nt and NDt for Brownian motion

n 1 2 3 4 � � � ! 1
P (Nt = n) 0.6265 0.1430 0.0630 0.0356 � � � � 2=(�n2)
P (NDt = n) 0.8003 0.0812 0.0334 0.0185 � � � � 1=(�n2)
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A simpli�ed approach to (117) and (118), which gives a probabilistic
interpretation of the integrals in these formulae, can be made as follows. Let
T be an exponential variable with rate 1 independent of the subordinator
(�s). It is clear by scaling that Nt for each t has the same distribution as NT ,
so it is enough to establish the formulae with T instead of t. By consideration
of a Poisson process of marked excursions as in Section 3 of [50], it is found
that T �GT has gamma (1��) distribution, and given T �GT = z that NT

has geometric distribution with parameter p�(z) as in (114). That is to say,

P (T �GT 2 dz;NT = n) =
1

�(1 � �)
z��e�zdz (1 � p�(z))

n�1p�(z) (122)

which gives a natural disintegration of (117) with t replaced by T . A similar
argument with DT �GT instead of T �GT yields

P (DT �GT 2 dz;NDT
= n) =

�

�(1 � �)
z��(1� e�z) dz(1 � p�(z))

n�1p�(z)

(123)
which is the corresponding disintegration of (118). To summarize, the dis-
tributions of Nt and NDt are two di�erent integral mixtures of geometric(p)
distributions on f1; 2; � � �g; the mixing distribution is that of p�(T �GT ) in
the case of Nt, and that of p�(DT �GT ) in the case of NDt.

6.4 Interpretation in the bridge case � = �

In the case � = �, corresponding to a Brownian or Bessel bridge, the dis-
tribution of N described in (113) can be understood as follows. Starting
with a (2 � 2�)-dimensional Bessel bridge of length 1, whose ranked excur-
sion lengths are V1 > V2 > � � �, let U be uniform on [0; 1] independent of the
bridge, and let VN = DU�GU be the length of the excursion interval (GU ;DU )
that contains time U . So VN is a length-biased pick from the sequence of
lengths (Vn). Then, as shown in Aldous-Pitman [1] for � = 1

2 , and in [45]
for 0 < � < 1, the joint distribution of (GU ;DU � GU ; 1 � DU ) is Dirichlet
with parameters (�; 1��;�), and conditionally given (GU ;DU�GU ; 1�DU )
the process B decomposes into three independent components: two bridges
of lengths GU and 1 � DU , and an excursion of length DU � GU . Let
V 0
1 > V 0

2 > � � � denote the ranked excursion lengths up to time GU , and let
V 00
1 > V 00

2 > � � � denote the ranked excursion lengths derived from the interval
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(DU ; 1). Note that the sequence V1 > V2 > � � � is obtained by ranking the set
of lengths V 0

1 ; V
0
2; � � � ; VN ; V 00

1 ; V
00
2 ; � � �, and that

N � 1 = N 0 +N 00

whereN 0 is the number of i such that V 0
i > VN , andN 00 is the number of i such

that V 00
i > VN . Now, if we introduce a gamma(1 + �) random variable Z1+�

independent of the bridge, then Z1+�GU ; Z1+�VN and Z1+�(1�DU ) are three
independent gamma variables with parameters �; 1 � � and � respectively,
and the three random components Z1+�(V 0

1 ; V
0
2 ; � � �), Z1+�(V 00

1 ; V
00
2 ; � � �) and

Z1+�VN are mutually independent. Moreover, the two in�nite sequences are
identically distributed, and the joint law of either of these sequences with
Z1+�VN is identical to the joint law of (V1(GT ); V2(GT ); � � �) with T �GT as
considered in the previous section for an unconditioned Bessel process and
an independent standard exponential variable T . It is now follows from the
previous discussion that the formula N � 1 = N 0+N 00 presents N � 1 as the
sum of two random variables which given Z1+�VN = z are i.i.d. geometric
with parameter p�(z). Thus we recover the result (113) in the bridge case
� = �: the distribution of N � 1 is an integral mixture of negative binomial
distributions with shape parameter 2.

7 The Markov chain derived from pd(�; �)

Starting from any ranked sequence of random variables V1 � V2 � � � withP
n Vn = 1, de�ne new variables Rn and Yn as in (20) and (44). Note the

relations (22) and (45) which allow any one of the sequences (Vn); (Yn) and
(Rn) to be recovered from any of the others. Note also the relations

Yn = (1 +Rn +RnRn+1 + � � �)�1 = Yn+1
Yn+1 +Rn

; Rn =
Yn+1(1� Yn)

Yn
(124)

and the a priori constraints

0 � Rn � 1; 1 +R1 +R1R2 + � � � <1; 0 � Yn+1 � Yn=(1 � Yn) (125)

7.1 The cases of pd(�; 0) and pd(0; �)

The following proposition is suggested by results of Vervaat [60, 61] and
Vershik [57]:
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Proposition 35 Suppose that R1; R2; � � � are independent, and satisfy (125)
a.s.. Then (Yn) is a Markov chain, typically with inhomogeneous transition
probabilities. If the Rn are identically distributed, then (Yn) is stationary,
with homogeneous transition probabilities. If Rn has density

P (Rn 2 dr) = fn(r)dr; (126)

then (Yn) has co-transition probabilities

P (Yn 2 dynjYn+1 = yn+1)

dyn
= 1

 
0 < yn+1 <

yn
�yn

!
fn

 
yn+1�yn
yn

!
yn+1
y2n

(127)

where �yn = 1 � yn

Proof. Since from (124) Yn+k is a function of Rn+1; Rn+2; : : :, it is immediate
that Yn = Yn+1=(Yn+1 +Rn) is conditionally independent of Yn+1; Yn+2; : : :
given Yn+1. This yields the Markov property in reverse time. The formula for
the co-transition probabilities is immediate by change of variable. Clearly,
(Yn) is stationary if (Rn) is i.i.d.. 2

Recall that P�;� governs (Vn) according to the pd(�; �) distribution. Ac-
cording to Theorem 7, under P�;0 for 0 < � < 1, the Rn are independent
with beta(n�; 1) distributions. Thus Proposition 35 implies that under P�;0
the sequence (Yn) is Markov with inhomogeneous co-transition probabilities
that may be read from the Proposition. The transition probabilities in the
forwards direction can then be written down using Bayes' rule, in terms of
the density functions p�;0;n(u), where for general (�; �) we de�ne

p�;�;n(u) = P�;�(Vn 2 du)=du: (128)

These densities are fairly complicated however. See Section 8.1.
This result under pd(�; 0) for 0 < � < 1 is analogous to the following

result of Vershik and Shmidt [59], Ignatov [32]: under pd(0; �) for � > 0, the
sequence (Yn) is Markov with homogeneous transition probabilities

P0;�(Yn+1 2 dyjYn = x)

dy
= 1

�
0 < y <

x

�x
^ 1

�
�x�1�x��1

p0;�;1(y)

p0;�;1(x)
(129)

While in the pd(0; �) case the transition probabilities of the chain (Yn) are ho-
mogeneous, the chain is not stationary. According to [59, 32], the stationary
probability density for this chain is given by

p�0;�(x) = K�1
0;�x

��p0;�;1(x) (130)
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where K0;� is a normalization constant. As shown by Ignatov [32], results of
Vervaat [60] and Watterson [63] imply that

K0;� = �(� + 1)e� (131)

where  = ��0(1) = 0:5771 � � � is Euler's constant, and that

p�0;�(x) = P �
0;�(V1 2 dx)=dx (132)

where P �
0;� makes (Rn) a sequence of i.i.d. beta(�; 1) random variables, and

V1 = (1 +R1 +R1R2 + � � �+R1R2R3 + � � �)�1: (133)

The densities p0;�;1(x) and p�0;�(x) are then determined by the P �
0;� distribu-

tion of �1 := (1 � V1)=V1, which is the in�nitely divisible law with Laplace
transform

E�
0;�[exp(���1)] = exp

 
��

Z 1

0
dx

(1� e��x)

x

!
(134)

Most of these results were obtained earlier in the special case � = 1, which
arises in applications to combinatorics and number theory (see Dickman [13],
Shepp-Lloyd [54], Goncharov [22], Billingsley [6], Vershik and Shmidt [58, 59,
57],Donnelly-Grimmett [15]).

It is easily veri�ed using Proposition 35 that P �
0;� makes (Yn) a stationary

Markov chain with the same homogeneous transition probabilities as those
displayed in (129) under P0;�. Consequently, the above results are largely
summarized by the following identity: for all positive product measurable
functions f ,

E0;�[ f(Y1; Y2; � � �) ] = K0;�E
�
0;�[Y

�
1 f(Y1; Y2; � � �)] (135)

Note that since V1 = Y1 and the (Vn) sequence can be recovered from the (Yn)
sequence and vice-versa, formula (135) holds just as well with Yn replaced
everywhere by Vn. The same is true of formula (136) below.

7.2 Extension to pd(�; �)

The following theorem, which is an ampli�cation of Theorem 14, generalizes
the entire collection of results described in the previous subsection to the full
two-parameter family pd(�; �) :
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Theorem 36 Let sequences (Vn), (Rn) and (Yn) be related by (20), (44),
(124). For 0 � � < 1; � > ��, let P�;� govern (Vn) with pd(�; �) distribution,
and let P �

�;� govern (R1; R2; � � �) as a sequence of independent random vari-
ables, such that Rn has beta (� + n�; 1) distribution. Then

(i) for every product measurable function f ,

E�;�[ f(Y1; Y2; � � �) ] = K�;�E
�
�;�[Y

�
1 f(Y1; Y2; � � �)] (136)

where K0;� is given in (131) and

K�;� = �(� + 1)�(1 � �)�=� (0 < � < 1; � > ��) (137)

(ii) Both P = P�;� and P = P �
�;� govern (Yn) as a Markov chain with the

same forwards transition probabilities, given by (129) for � = 0 and as
follows for 0 < � < 1:

P (Yn+1 2 dyn+1jYn = yn)

dyn+1
= y���1n (1� yn)

n�+��1 r(�; � + n�; yn+1)

r(�; � + n�� �; yn)
(138)

for 0 < yn < 1, 0 < yn+1 < yn=(1� yn), and 0 otherwise, where

r(�; �; y)dy = �(
�

�
+ 1)y�P �

�;�(V1 2 dy) = C�1
�;�P�;�(V1 2 dy) (139)

for C�;� as in (42), and V1 = Y1.

(iii) The P �
�;� distribution of �1 := (1 � V1)=V1 is in�nitely divisible, with

Laplace transform given for � = 0; � > 0 by (134), and for 0 < � <
1; � > �� by

E�
�;�[exp(���1)] =

 
1

 �(�)

! �
�
+1

(140)

for  � as in (33).

Remark 37 For 0 < � < 1, the function r(�; �; y) is determined by the
�rst equality in (139) and the Laplace transform (140). The last expression
in (139) and Proposition 45 in the next section yield alternative formulae
for r(�; �; y). For � = 0, the chain (Yn) is stationary and homogeneous
under P �

0;�, whereas in case 0 < � < 1 the chain is non-homogeneous, and
the distribution of Yn depends on n. See Section 7.3 below regarding the
asymptotic distribution of Yn as n!1.
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Remark 38 As the results for � = 0 are known, we shall assume for the
proof that 0 < � < 1. We note however that the results for � = 0 can be
recovered by passage to the limit as � # 0 for �xed �, using (105).

Proof of Theorem 36. Let 0 < � < 1.
(i). From the basic absolute continuity relation (41), for all measurable

f � 0
E�;�[f(Y1; Y2; � � �)] = C�;�E�;0[L

�=�f(Y1; Y2; � � �) ] (141)

where L is the local time variable, which can be expressed from (23) as

L = Y �
1 lim

n!1
n(R1 � � �Rn)

� (P�;� a.s. for all � > ��) (142)

On the other hand, since both P �
�;� and P�;0 make R1; � � � ; Rn a sequence of

independent beta variables, calculating the ratio of the two product densities
gives

E�
�;�[f(R1; � � � ; Rn)] =

�( �
�
+ n + 1)

�( �
�
+ 1)�(n + 1)

E�;0[(R1 � � �Rn)
�f(R1; � � � ; Rn)]:

(143)
Passage to the limit as n ! 1, using �(�=� + n + 1)=�(n + 1) � n�=�,
martingale convergence, and (142), yield

E�
�;�[f(R1; R2; � � �)] = �( �

�
+ 1)�1E�;0[L

�=�Y ��
1 f(R1; R2; � � �)] (144)

a formula which holds just as well with f(Y1; Y2; � � �) instead of f(R1; R2; � � �),
due to (124). Comparison of (141) and (144) yields (136).

(ii). According to Proposition 35, (Yn) is a Markov chain under P �
�;� with

transition probabilities that can be written down using the general form of
the co-transition probabilities (127), and the prescribed beta density of Rn

which is fn(x) = (� + n�)x�+n��1 for 0 < x < 1. Bayes' rule then yields the
forwards transition probabilities of the form (138), for r(�; �; y) de�ned by
the �rst equality in (139), after using the formula

P �
�;�(Yn 2 dy) = P �

�;�+(n�1)�(Y1 2 dy): (145)

This follows from (124), since by de�nition the P �
�;� distribution ofRn; Rn+1; � � �

is the P �
�;�+(n�1)� distribution of R1; R2; � � �. The second equality in (139) for

r(�; �; y) is immediate from (136) and the formula (29) for C�;� in (41). Since
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the density factor dP �
�;�=dP�;� = K�;�Y

�
1 is a function of Y1, it is clear with-

out further calculation that (Yn) must be Markov under P�;� with the same
transition probabilities as under P �

�;�.
(iii). To obtain the formula (140) for the Laplace transform of �1 :=

(1� V1)=V1 use (144) to compute

E�
�;�[exp(���1)] = �( �

�
+ 1)�1E�;0[X

�=�
1 exp(���1) ] (146)

where X1 = LV ��
1 has exponential distribution with rate 1. But from (67)

E�;0[exp(���1)jX1] = exp[�X1( �(�) � 1)]

and using this expression in (146) yields (140). 2
Immediately from the above theorem, we derive the formula of the fol-

lowing corollary, which extends formulae of Vershik and Shmidt [59], and
Ignatov [32] in the case � = 0. The Markov property of (Yn) under P�;�
is evident by inspection of this formula. This formula can also be derived
by suitable changes of variables and integration from Proposition 45, after
changing variables and integrating out t. Combined with Proposition 35, this
gives an alternative approach to the previous theorem.

Corollary 39 The P�;� joint density of Y1; � � � ; Yn is given by the formula

P�;�(Y1 2 dy1; � � � ; Yn 2 dyn)=�n
i=1dyi =

C�;��
n�1�n�1

i=1 [y
���1
i (1 � yi)

i�+��11(yi+1 < yi=(1 � yi))] r(�; n�� � + �; yn)

for r(�; �; y) de�ned by (139).

Remark 40 Since P�;0 = P �
�;0 for all 0 < � < 1, the special case 0 < � <

1; � = 0 of formula (145) allows computation of the P�;0 distribution of Yn:

P�;0(Yn 2 dy) = 1

(n� 1)!
y�(n�1)� r(�; n� � �; y) dy (147)

This result can also be read from formula (80). In particular, the moments
of Yn derived from pd(�; 0) are given by the expression

E�;0Y
p
n =

1

(n� 1)!
E�;0[V

p�(n�1)�
1 Ln�1] (148)

which can be evaluated using (84).
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Remark 41 Note that if ( ~Yn) are the independent factors as in (4) derived
from the size biased permutation ( ~Vn) of a pd(�; �) sequence (Vn), then for
each k = 1; 2 � � � the sequence ( ~Yn+k; n = 1; 2 � � �) has the same distribution
as the independent factors derived similarly from the size biased presenta-
tion of pd(�; �+ k�). On the other hand, the sequence (Yn+k ; n = 1; 2 � � �) is
Markovian with the same sequence of inhomogeneous transition probabilities
as (Yn) derived from a pd(�; �+ k�), but the initial distribution is di�erent.
This distinction appears already for � = 0: then (Yn) has stationary transi-
tion probabilities, but the distribution of Yn varies with n, only approaching
the stationary distribution in the limit as n!1.

To illustrate by a concrete example, (Y2; Y3; � � �) derived from excursions
of an unconditioned Bessel process is a Markov chain with exactly the same
inhomogeneous transition function as (Y1; Y2; � � �) derived from the corre-
sponding bridge. However Y2 for the unconditioned process does not have
the same law as Y1 for the bridge.

7.3 Asymptotic behaviour of the pd(�; �) chain

It was shown by Vershik and Shmidt [59] for � = 1 and Ignatov [32] for
general � > 0 that the P0;� distribution of Yn converges to the stationary dis-
tribution (130) of the Markov chain. For 0 < � < 1; � > ��, the asymptotic
behaviour of the distribution of Yn can be derived as follows from the relation
Yn = 1=(1 + �n) and the description of the P�;0 distribution of �n provided
by Proposition 10(ii). According to that proposition, under P�;0 the random
variable �n is the sum of n independent copies of �1, which has �nite mo-
ments of all orders, obtained by di�erentiation of its Laplace transform (36).
In particular

E�;0(�1) =
�

1� �

and a strong law of large numbers implies that

�n

n
! �

1 � �
P�;0 a.s.

hence also P�;� a.s. for all � > �� by Proposition 13. Similarly, the central
limit theorem implies that the P�;0 distribution of

p
n
�
�n

n
� �

1 � �

�
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converges to normal with mean zero and variance

V ar�;0(�1) =
�

(2� �)(1 � �)2

A standard argument shows that this limit law under P�;0 is mixing in the
sense of [2]. That is to say the same limit distribution is obtained after a
change of measure to any distribution Q that is absolutely continuous with
respect to P�;0, in particular, for Q = P�;� for all � > ��. Translating these
results in terms of Yn = 1=(1 + �n) yields the following proposition:

Proposition 42 Under P�;� for all 0 < � < 1 and � > ��,

nYn ! 1 � �

�
a.s. (149)

and the distribution of p
n
�
nYn � 1 � �

�

�
(150)

converges to the normal distribution with mean zero and variance ��2(2 �
�)�2.

These asymptotics for Yn may be compared with the corresponding behaviour
of the independent factors ( ~Yn) as in (4). From the beta (1 � �; � + n�)
distribution of ~Yn under P�;� one gets:

E�;�( ~Yn) =
1� �

1 + � + (n� 1)�

For 0 < � < 1; � > ��, this makes

E�;�(n~Yn)! 1 � �

�
as n!1

More precisely, the asymptotic distribution of �n~Yn is gamma (1� �) So Yn
and ~Yn are both of order 1=n for large n, their means are asymptotically the
same, but their asymptotic distribution is di�erent.

8 Some Results for a General Subordinator

We collect in this section some results regarding interval lengths Vn(t) derived
for a general subordinator (�s) as in Section 1.2, which in the stable and
gamma cases are related to pd(�; �) .
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8.1 Perman's Formula

Let �1 � �2 � � � � be the ranked jumps up to time 1 of a drift-free subor-
dinator (�s; s � 0). Put Vn = �n=�1. Perman [43] found a formula for the
(n+ 1)-dimensional joint density

pn(t; v1; � � � ; vn) = P (�1 2 dt; V1 2 dv1; � � � ; Vn 2 dvn)=dt dv1 � � � dvn (151)

assuming the L�evy measure � of (�s) has a density h with respect to Lebesgue
measure on (0;1). Perman's formula is as follows. For n � 2

pn(t; v1; v2; � � � ; vn) = tn�1h(tv1)h(tv2) � � � h(tvn�1)
~vn

p1

�
t~vn;

vn
~vn

�
(152)

for t > 0 and 0 < v1 < v2 < � � � < vn < 1,
P

i vi < 1, where

~vn = 1� v1 � v2 � � � � � vn�1;

and
p1(t; v) = P (�1 2 dt; V1 2 dv)=dtdv (153)

is the unique solution of the integral equation

p1(t; v) = th(tv)
Z v

1�v
^1

0
p1(t(1� v); u)du (154)

for t > 0 and v 2 (0; 1).

Proposition 43 Let f(t) := P (�1 2 dt)=dt denote the density of �1, and de-
�ne a sequence of non-negative functions fn(t; u); t > 0; 0 < u < 1 inductively
as follows:

f1(t; u) = th(tu)f(t�u) (155)

where �u = 1� u, and for n = 1; 2; � � �

fn+1(t; u) = 1(u � 1=n)th(tu)
Z 1

u=�u
dvfn(t�u; v) (156)

The joint density p1(t; v) appearing in (153) and (152) is given by the formula

p1(t; v) =
1X
1

(�1)n+1fn(t; v) (157)

where all but the �rst n terms of the sum are zero if v > 1=(n + 1).
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Proof. This is straightforward by induction on n, using Perman's integral
equation (154).

Remark 44 Integrating formula (157) from u to 1 gives a series expression
for P (V1 > u; �1 2 dt). It can be shown by induction that this series is
identical to that obtained by Perman by a di�erent method in formula (8)
of [43].

Suppose for the rest of this section that (�s) is a stable subordinator of
index �, as in (11). Then the density h(x) of the L�evy measure is

h(x) = �Cx���1; (x > 0) (158)

and from (29) the density f�(t) of �1 is characterized by its negative moments
via the following formula: for all real theta > ��

Z 1

0
t��f�(t)dt = E(���1 ) =

1

C�=�C�;�
=

�( �
�
+ 1)

�(� + 1)

1

(C�(1 � �))�=�
(159)

Proposition 45 Let (Vn) have pd(�; 0) distribution, and let � be de�ned
as in (24), so � is the sum of the points �n of the prm �� derived from (Vn).
Then the joint density of (�; V1; � � � ; Vn) is the function pn(t; v1; v2; � � � ; vn)
given by Perman's formula (152) with h(x) de�ned by (158) and p1(t; v) de-
rived as in Proposition 43 from f(x) = f�(x) de�ned by (159). For (Vn) with
pd(�; �) distribution, for 0 < � < 1, � > ��, the corresponding joint density
is c�;� t

��pn(t; v1; v2; � � � ; vn) where c�;� = C�=�C�;�. .

Proof. This is an immediate consequence of Propositions 9, 43 and 13. 2
Integrating out t in the above (n+1)-dimensional joint density gives an ex-

pression for the n-dimensional joint density of (V1; � � � ; Vn) for a pd(�; �) distributed
sequence (Vn). In particular, for n = 1 we obtain Proposition 19 as follows:
Proof of Proposition 19. Proposition 45 combined with Proposition 43
yields formula (52) with the nth term of the sum replaced by the expression
(�1)n+1c�;�

R1
0 t��fn;�(t; u)dt where fn;�(t; u) is the fn(t; u) de�ned induc-

tively by Proposition 43 starting from f(t) = f�(t) as in (159). Chasing
these de�nitions yields the expression (53) by making a suitable change of
variable to simplify the integral with respect to t using (159). 2

47



8.2 Laplace transforms for some in�nite products

Let Vn(T ) be derived as in (6) from the closed range Z of a subordinator (�s)
with L�evy measure � as in (7). The formulae of the following proposition
serve to characterize the laws of the sequences (Vn(s)) and (Vn(�t)=�t) for
all s > 0 and t > 0. A formula like (160) involving just V1(s) appears as
Theorem 2.1 of Knight [35]. See also formula (76) of Kingman [33] for an
expression similar to (162) related to V1(�t)=�t.

Proposition 46 For each measurable function g : (0;1)! [0; 1] such thatR1
0 �(dv)(1� g(v)) <1, and � � 0,

Z 1

0
ds e��sE

"Y
n

g(Vn(s))

#
=

R1
0 due��u�(u;1)g(u)R1
0 �(dv)(1� e��vg(v))

(160)

Z 1

0
ds e��sE

"Y
n

g

 
sVn(�t)

�t

!#
= (161)

Z 1

0
du
�
t
Z 1

0
�(dv)e��uvg(uv)v

�
exp

�
�t
Z 1

0
�(dw)(1 � e��uwg(uw)

�
(162)

Proof. By considering these identities with e��sg(s) instead of g(s) it is
enough to prove them for � = 0. The left side of (160) then equals

E

"X
u>0

Z �u

�u�
ds

 Y
m

g(Vm(�u�)

!
g(s� �u�)

#

which, using the basic compensation formula of excursion theory, equals

E

"Z 1

0
du

 Y
m

g(Vm(�u�))

!#�Z 1

0
dv�(v;1)g(v)

�

Now (160) follows easily after evaluating the expectation above using Fubini's
theorem and the formula

E

"Y
n

g(Vn(�u�))

#
= E

"Y
n

g(Vn(�u))

#
= exp

�
�u

Z 1

0
�(dx)(1 � g(x))

�
(163)
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which is an expression of the fact that the Vn(�u) are the points of a prm (u�)
(Kingman [34], (3.35)). Turning to (161), the change of variables s = u�t
allows (161) for � = 0 to be rewritten as

Z 1

0
duE

"
�t
Y
n

g(uVn(�t))

#

The integrand can be evaluated using (163) with t instead of u and g(ux)e��x

instead of g(x), by di�erentiation with respect to � at � = 0. The result is
(162). 2

For a stable (�) subordinator with � = �� as in (11), it is easily veri�ed
that the expression in (162) equals the right side of the expression in (160),
which proves the identity in law of the two sequences featured in Proposition
5. Note also that (163) and hence (160) can be veri�ed also for measur-
able g : (0;1) ! [0;1) such that 0 <

R1
0 �(dv)(1 � g(v)) < 1 provided

the integral is absolutely convergent. Thus we obtain the following Corol-
lary regarding the expectation of an in�nite product derived from (Vn) with
pd(�; 0) distribution:

Corollary 47 For 0 < � < 1 and g : (0;1)! [0;1) such that

0 <
Z 1

0

dv

v�+1
(1� g(v)) <1 (164)

and the integral is absolutely convergent, de�ne

Kg(�; �) =
Z 1

0

dv

v�+1
(1� e��vg(v)) (165)

K 0
g(�; �) =

d

d�
Kg(�; �) =

Z 1

0

dv

v�
e��vg(v) (166)

Then Z 1

0
ds e��sE�;0

"Y
n

g(sVn)

#
=

K 0
g(�; �)

�Kg(�; �)
(167)

To illustrate, taking g(x) = exp(��xp) for � > 0 and p > 1 gives a
double Laplace transform which determines the distribution of

P
n V

p
n for a
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pd(�; 0) distributed (Vn). Unfortunately, such transforms seem di�cult to
invert. For g a polynomial with non-negative coe�cients, say

g(x) = 1 +
kX

j=1

ajx
j

we �nd that

Kg(�; �) =
�(1 � �)

�
�� �

kX
j=1

aj�(j � �)���j

and hence that the Laplace transform in (167) is

K 0
g(�; �)

�Kg(�; �)
=

1

�

 
1 +

Pk
j=1 j�(j � �)aj�k�j

�(1 � �)�k � �
Pk

j=1 �(j � �)aj�k�j

!
(168)

In particular cases this transform can be inverted to obtain for example

E�;0

"Y
n

(1 + aV p
n )

#
= 1 +

p

�

1X
k=1

1

(pk)!

 
��(p � �)

�(1 � �)

!k
ak (169)

which for p = 1 and p = 2 becomes

E�;0

"Y
n

(1 + aVn)

#
= 1 +

1

�
(e�a � 1) (170)

E�;0

"Y
n

�
1 + aV 2

n

�#
= 1 +

2

�
(cosh(

q
�(1� �)a� 1) (171)

Examination of the coe�cient of ak on both sides of (169) shows that (169)
amounts to the following identity: for all positive integers k and p,

E�;0

2
4 X
1�n1<���<nk

V p
n1
� � � V p

nk

3
5 = p

�

1

(pk)!

 
��(p � �)

�(1 � �)

!k
(172)

This is a special case of formula (177). Taking

� = 0; n = pk;mp = k;mj = 0 for j 6= p;
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in (177) and multiplying both sides by k! yields (172). Also from (177), or
by variations of the above argument one can read analogs of (172) and (169)
for pd(�; �) and results for other polynomials. For instance, (167) can be
inverted explicitly for g(v) = 1 + av + bv2.

To conclude this section, we record the following analog of Corollary 47
for pd(�; �) instead of pd(�; 0):

Corollary 48 For 0 < � < 1, � > 0, � > 0, and g and Kg(�; �) as in
Corollary 47,

Z 1

0
ds e��s

s��1

�(�)
E�;�

"Y
n

g(sVn)

#
=

 
�(1 � �)

�Kg(�; �)

!�=�
(173)

Proof. This can be obtained from the previous results using formula (43),
but we prefer the following derivation from Proposition 20. Replacing g(v)
by ev��vg(v), it su�ces to establish the formula for � = 1. Let Vn(T ) be
derived from (�s) and T = � (S�;�) as in Proposition 20. By application of
that Proposition, E [

Q
n g(Vn(T ))] equals the left side of (173) for � = 1. But

evaluating this expectation by conditioning on S�;� and using (163) yields
the right side of (173) for � = 1. 2

9 Appendix

We mention in this appendix some known results which provide motivation
for the de�nition and study of pd(�; �) .

9.1 The �nite Poisson-Dirichlet distribution

If the convention is made that the beta(a; b) distribution is a unit mass at 1
for a > 0; b = 0, then for (�; �) in the range

� = �� and � = m� for some � > 0 and m 2 f2; 3; � � �g (174)

De�nition 1 prescribes a joint distribution of a �nite sequence ( ~V 1; � � � ; ~V m)
with ~V i � 0 and

Pm
i=1

~V i = 1, and the distribution of the corresponding
ranked sequence (V1; � � � ; Vm; 0; 0; � � �) with V1 � � � � Vm � 0 and

Pm
i=1 Vi = 1

may still be called pd(�; �) . It is known that for (�; �) = (��;m�) in
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this range, ( ~V 1; � � � ; ~V m) may be constructed as the size-biased permutation
of (W1; � � � ;Wm), where (W1; � � � ;Wm) has symmetric Dirichlet distribution
obtained by setting Wi = Xi=(X1 + � � � +Xn) for i.i.d. Xi with gamma(�)
distribution, so (V1; � � � ; Vm) can be obtained by ranking (W1; � � � ;Wm). See
Kingman [34], Section 9.6 for a proof and references. As shown by Kingman
[33], as � = �� # 0 and m " 1 for �xed � = m�, pd(�; �) converges weakly
to pd(0; �). It is easily veri�ed that the formulae in this paper which follow
directly from Proposition 2, in particular, (5) (51) and (177) hold also for
(�; �) in the range (174). See also Gri�ths [23] for some moment formulae
for the �nite Poisson-Dirichlet distribution in the vein of (50).

9.2 The partition structure derived from pd(�; �)

In a random sample of size n from a population with random frequencies
(V1; V2; � � �), and a vector of non-negative integers (m1; � � � ;mn) with �imi =
n, the probability that there are m1 species with a single representative in
the sample, and m2 species with two representatives in the sample, and so
on, is given by the formula

p(m1; � � �mn) =
n!Qn

i=1(i!)
mimi!

�(m1; � � �mn) (175)

with

�(m1; � � �mn) = E

2
4X nY

i=1

miY
j=1

V i
n(i;j)

3
5 (176)

where the summation ranges over all choices of distinct n(i; j) with

i = 1; � � � ; n; j = 1; � � � ;mi

. See Kingman [34], where the expectation (176) is evaluated for (Vn) with
pd(0; �) distribution to obtain the formula for p(m1; � � �mn) in this case,
which is the Ewens sampling formula [18, 19, 20]. Proposition 9 of Pitman
[48] gives the generalization of the Ewens formula for pd(�; �) , which can
be stated as follows. For real numbers x and a and non-negative integer m,
let

[x]m;a =

(
1 for m = 0
x(x+ a) � � � (x+ (m� 1)a) for m = 1; 2; : : :

and let [x]m = [x]m;1. Note that [1]m = m!.
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Proposition 49 [48] For (Vn) with pd(�; �) distribution, (175) and (176)
hold with �(m1; � � �mn) = ��;�(m1; � � �mn) given by the formula

��;�(m1; � � �mn) =
[� + �]k�1;�
[� + 1]n�1

nY
j=1

([1� �]j�1)
mj (177)

See [48, 47, 45, 49] for further developments and applications of this formula.
As a consequence of Proposition 49, the urn scheme for generating pd(0; �)
studied by various authors [8, 26, 28, 14] also admits a two-parameter gen-
eralization [48], whose simple form provides another characterization of the
two-parameter family [66].
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