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Abstract

In many Markov chain Monte Carlo problems, the target density function is known up to
a normalization constant. In this paper, we take advantage of this knowledge to facilitate the
convergence diagnostic of a Markov sampler by estimating the L' error of a kernel estimator.
Firstly, we propose an estimator of the normalization constant which is shown to be asymptoti-
cally normal under mixing and moment conditions. Secondly, the L! error of the kernel estimator
is estimated using the normalization constant estimator, and the ratio of the estimated L' error
to the true L' error is shown to converge to 1 in probability under similar conditions. Thirdly,
we propose a sequential plot of the estimated L' error as a tool to monitor the convergence of the
Markov sampler. Finally, a 2-dimensional bimodal example is given to illustrate the proposal,

and two Markov samplers are compared in the example using the proposed diagnostic plot.
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1 INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have been used in both Bayesian and likelihood
computations (Gelfand and Smith, 1990, Geyer and Thompson, 1992, Smith and Roberts, 1992,
and Besag and Green, 1993). The MCMC method enables us to obtain (dependent) samples
from a target density from which direct sampling is difficult. Quantities of interest of the target
distribution, such as mean, variance, and tail probabilities, can then be approximated using the
MCMC sample. Since the target distribution is the stationary distribution of the constructed
Markov sampler, the success of the MCMC methods relies crucially on our ability to assess the
convergence of the chain to its equilibrium.

The so-called convergence diagnostics problem has attracted attention from many authors. Al-
though a priori bounds on the convergence rate exist (Rosenthal, 1991, 1993a, 1993b, and Mengersen
and Tweedie, 1993), they are currently known only in some special cases. Convergence diagnostics
based on a single run of MCMC or Markov samplers have been proposed using time series methods
(Raftery and Lewis 1992). Gelman and Rubin (1992) proposed a multiple chain approach in the
MCMC context, followed by Liu, Liu, and Rubin (1992) and Roberts (1992). In the context of
Gibbs samplers, Ritter and Tanner (1992) and Cui, Tanner, Sinhua, and Hall (1992) suggested
diagnostic statistics based on importance weights, using either multiple chains or a single chain.

In many MCMC problems, especially those using the Metropolis-Hastings algorithm, the target
density is known up to a normalization constant. In this paper we take advantage of this knowledge
to facilitate the convergence diagnostic of a Markov sampler. Based on a single MCMC sample
aiming at a particular target density, we estimate the normalization constant using a kernel esti-
mator and prove its asymptotic normality under mixing and moment conditions. Thus we have
available two density estimators: one is the kernel estimator based on the MCMC sample and the
other on the estimated normalization constant and the unnormalized target density. If the MCMC
sample comes from around a local mode of the target density, the kernel estimator will approximate
the conditional density around this mode. On the other hand, the other density estimator has the
correct modes and so it will coincide well with the kernel estimator around the local modes visited
by the Markov sampler, but differ greatly from the kernel estimator at unvisited modes, that is,
their L' distance will be large if unvisited modes are major. This suggests that we look at the L!

distance of these two estimators. The L' distance is favored over other distances such as L? because



of its nice invariance property and its interpretability in terms of differences of probabilities (De-
vroye 1987, pp. x). Since the new density estimator is “parametric” (the normalization constant is
a 1-dimensional “parameter”), it converges to the true target density at the n~1/2 rate, provided
that the chain mixes quickly. This rate outperforms the rate of any kernel estimator, hence the L'
distance of the two density estimators estimates the L' error of the kernel estimator. It should be
pointed out that the estimated L' error requires a multi-dimensional integration as does the nu-
merical evaluation of the normalization constant. However, we do not need the estimated L' error
to the precision needed for the normalization constant. When the Markov sampler is diagnosed
as mixing well, at the price of one multi-dimensional integration for the estimated L! error, we
can use the Markov sample to approximate quantities which require additional multi-dimensional
integrations, such as mean, variance, and tail probabilities of the target density.

For 2-component Gibbs samplers, Zellner and Min (1992) proposed three 1-dimensional conver-
gence diagnostic statistic, of which one is based the ratio of the target density values at two fixed
points. This proposal is related to ours in the sense that it also uses the unnormalized density
function, but only locally.

From a more theoretical point of view, density estimation in terms of L' norm in the iid case
has been the focus of much research, for example, the books by Devroye (1987) and Devroye and
Gyorfi (1985). It is worth noting, however, that any traditional method to estimate the L! error
in the Markov sampler case that ignores the known unnormalized density form might give false
impressions of convergence since they will be based on a single run one way or the other.

The paper is organized as follows. In Section 2, we investigate the statistical properties of the
estimator of the normalization constant and the estimated L! error of the kernel estimator. Under
geometric ergodicity of the Markov sampler, we prove the relative stability of the kernel estimator
in the L' norm. Under an additional moment condition on the ratio of the kernel to the target
density, we show that the normalization estimator is asymptotically normal and we obtain the first
order expansion of the L! error of the kernel estimator. In section 3, we apply the results in section
2 to the convergence diagnostic problem of Markov samplers. A data-dependent way to choose the
bandwidth for the kernel estimator is provided. As a diagnostic tool to monitor the convergence
of the Markov sampler, we propose a sequential plot of the estimated L' errors for the Markov

sampler. Different Markov samplers aiming at the same target density can be compared in terms of



the estimated L! error sequential plot. Moreover, in Section 4 the proposed method is illustrated
through simulations in a 2-dimensional bimodal example. Section 5 contains concluding remarks.

All the proofs are deferred to the appendix.

2 ESTIMATING THE L! ERROR OF A KERNEL
ESTIMATOR

In this section, based on the kernel estimator of the target density, estimators of the normalization
constant and the L' error of the kernel estimator are proposed. Theoretical properties of these esti-
mators are derived under mixing conditions on the Markov sampler and under a moment condition
on the ratio between the kernel function and the unnormalized target density.

Assume that the d-dimensional target density 7() is known up to a normalization constant,

i.e.,

where g(2) is known, non-negative and integrable, and 0 := [[ g(2)d2]™!. Note that for simplicity
we choose 6 as the inverse of the normalization constant, and the integration domain in the definition
of # should be taken as the support of g(z). Let Xg, X1,..., X,, ... be a sequence of observations
from a Markov sampler in R? with 7(x) as its stationary density with respect to the Lebesgue
measure in R?. Such a Markov sampler can be obtained using the Metropolis-Hasting algorithm
(Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953, and Hastings 1970).

We further impose a geometric ergodicity condition on the Markov sampler as follows:

Assumption GE For some 0 < p < 1, and M (z) with £, M(z) < oo,
|P(X, € A|Xo=2)— Pr(A) < M(z)p™ for all measurable A and z € R".

For sufficient conditions under which Assumption GE holds, see Rosenthal (1991, 1993a and
1993b) and Mengersen and Tweedie (1993).

Since the results in this paper are asymptotic in nature, under Assumption GE, we may assume
from now on that Xy has density «, i.e., Xg, X1, ... is stationary.

Another quantity which measures the mixing of the sequence is the g-mixing coefficient (Bradley



1986)
By = {30 YD P(Xo € Ai, X, € B) — P(Xo € A)P(X,. € By
{A;} and ]{Bj} are finite measurable partions of R?}.
In the Markov case, the S-mixing coefficient can also be expressed as
B(n) = Flsupacpal P(X, € A|Xo) = P(X, € A)[].
It is obvious from the second definition of §(n) that, under Assumption GE,

B(n) < EM(z)p".

For a given 1-dimensional bounded symmetric kernel K'(-) such that [pa K(|z|)dz =1, let h(-)

be the d-dimensional kernel based on K (Silverman 1986):

Lo el
he(z) = —K(—
(1) = K (2
where bandwidth ¢ > 0 and | -| is the Euclidean norm in R?. Then the kernel estimator with

bandwidth b,, of 7(-) can be defined as

1

Technically speaking, € is not an unknown parameter in the statistical sense, but rather a quantity
unknown computationally. Intuitively, 7,(z)/g(z) = 6 for any fixed point z, if 7, estimates 7 well

~1/2, Using some insight

at z. However, this type of estimator estimates # at a rate slower than n
from efficient estimation of smooth functionals in density estimation problems, Professor Peter
Bickel suggested the following estimator of § which will be shown to be asymptotically normal at
the n=1/2 rate:

Based on the kernel estimator 7, with a fixed bandwidth o, define

0, = Zh (X:— X)) /9(X;)

n(n—l Z;é]

= (n—1)" Z (X X;)—(n(n—1))7" Z ho(0)/9(X;).



For a chosen measurable set A C R? with non-zero Lebesgue measure, denote

1= 1,04) = [ [#u(e) = m(a)lda.

and its estimator

i =i.4)= /A

Lemma 1 Under Assumption GE, let b, = O(n") for some b € (0,1). Then for any ¢ > 1, we have

Fnl(2) — 0f(2)|de.

|1 (A) — EL,(A)| = o((logn)*/? n="?) as.

Theorem 2 (Relative Stability) Suppose 7(x) has continuous second (partial) derivatives and
Jpa|sis;|K(|s|)ds < oo for 4,7 = 1,2,...,d. Then under Assumption GE and for b, = Bp~V/(d+4)
(B >0), we have

liminf »?/HYEL (A) >0, and

n—oo

lim I,(A)/EL.,(A)=1 a.s.

Theorem 3 (Asymptotic Normality of the Normalization Constant Estimator) Assume that GE
holds and that there exist p > 2 and ¢ > 0 such that for dist(X,Y) = dist(Xo, X;) (7 > 0), or
dist(X) = dist(Y') = dist(Xp) and X, Y independent, we have

Elhs(X =Y)/g(X)|P < 0.

Then /n(6, — 6) is asymptotically normal and so is \/n(;* —871).
Following directly from Theorem 2 and Theorem 3, we have
Theorem 4 (Relative Stability of the Estimated L' Error) Under the assumptions of Theorem 2

and Theorem 3, and for a non-zero measure compact set A C R?, we have, as n tends to infinity,

B(A) _ fo Fal) = Bgla)]de
1(A) " [y [frale) — w(2))de

Remarks: (i) The above results from Lemma 1 to Theorem 5 hold under the weaker condition

B(n) < O(p}) for some pg € (0, 1).

—1 w.p. 1.

(ii) Because
1) = 1) = | [ (7o) = Bg(0)] = [#a(e) = Bg(o)])dal
< [ (1fala) = bg(a) = (7o) - Bg(a))do
= 16-6] [ gla)da.
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and for any a < 1/2, na(é —#) — 0 with probability 1 by Theorem 3. Hence
[1n(A) = I(A)] = op(n™7),

for any a < 1/2.

(iii) Note that in Assumption GE, if there is a positive constant such that M(z) < v < oo,
Doob (1953, Lemma 7.1, pp. 222) gives an inequality on the covariance of functions based on two
blocks of observations which are apart. In Rosenblatt (1970), the GGy assumption is imposed to
calculate the variance of 7,,(z) and covariance of 7, (z) and 7,(y) (z # y). He also gave a CLT for
Tp(2). Our situation is a little different since the joint distributions might have atoms when the
Metropolis-Hastings algorithms are used.

Let us now specify the G5 assumption in Rosenblatt (1970). For any bounded measurable

function h, let T be the transition probability operator of our stationary Markov sequence
(Th)(y) == E(h(X1)[Xo = y).
Let |||z be the L? norm of k and the following be the modified L2 norm of T
T3 := supy |[[T"h — Eh|[2/[|h — Ehl|.
T is said to satisfy G5 if for some m > 0,
|T™|y < 1.

Let a(x) be the atom mass of the kth order joint distribution, and pg(y|z) to be the continuous

part of the conditional distribution
ag(z) = P(Xg = 2| Xo = @), pr(yla)dy = P(X; € dy|Xo =) for a # y.

Theorem 5 Suppose that 7, ay, pr (K > 1) and second (partial) derivatives of (2 ) are continuous,
and that [ |s;s;|K(]s]|)ds < oo for all i,j = 1,...,d. Then under assumption G5, and for a compact
set A of positive Lebesgue measure and b, = Bn~'/+) (B > 0), /nbl(7,(z) — Ef,(z)) is

asymptotically normal with mean zero and variance v,., and as n — oo,

DR (A) — e(A),



where

vy, = lim (nb?)Var(f,(z))

n—oo

() /1(2(|s|)ds(1 £23 ap(e)) < oo,
k=2

e(A) /A /Rd /57 + bias(1)|6(x ) dadt

where ¢ is the standard normal density and bias(t) = 2= 1 BU+Y/2 [ s/ Ax(t)sK (|s|)ds.

Remarks: Similar results as presented in Theorems 2-5 can be shown in the case of Gibbs
samplers (Gelfand and Smith, 1990). There the mixture estimator of the marginal density can be
used, instead of é, together with the known conditional density to form another estimator for the
joint density besides the kernel estimator. Note that Yu (1993, Theorem 4.2, p. 725) showed that
the convergence rate of the mixture estimator outperforms that of the kernel estimator. In the
discrete case, a histogram estimator can be used in the place of the kernel estimator, and g can be

similarly constructed based on the histogram estimator.

3 USING ESTIMATED L! ERROR TO MONITOR THE
CONVERGENCE OF MARKOV SAMPLERS

In this section, we propose a convergence diagnostic statistic based on the estimated L' error
of the kernel estimator studied in Section 2. This way, we use the information contained in the
unnormalized target density g(z) in addition to a single run of the Markov chain. If the Markov
sampler mixes quickly, the results in Section 2 give the consistency of this diagnostic statistic.
Many other diagnostic statistics proposed in the literature also possess this property. However, the
estimated L' error statistic is motivated to capture the discrepancy between the Markov sample
and the target density when the sampler does NOT mix quickly, or when the sampler is sticky.
In other words, the estimated L! error statistic is also expected to have good “power” if we view
the convergence diagnostic problem at a certain sample size as testing the null hypothesis that the
Markov chain converges to the target density verses the alternative that it does not. See Section
4 for an approximate calculation of the estimated L' error in the bimodal case when the sampler

fails to converge to the correct target density.



Since the consistency result (Theorem 3) holds sample-wise, we can monitor the convergence
of a Markov sampler by sequentially plotting the estimated L! error fn(A) against the the sample
size. We choose A as large as the computing resource allows and try to include the modes in A
if we know how. Since adding a few more observations does not change the kernel estimator very
much, we only need to plot fn(A) over regular intervals of size nstep, which can be decided based
on the availability of the computing resources. In the worse case we take nstep = n, i.e., we only
evaluate the estimated L' error at the end of pre-set iterations. Although we know the optimal
rate to choose for b,,, the optimal multiplier B,, depends on m(z) and thus has to be chosen based
on data. A sensible choice can be made by modifying the recommendation of Silverman (1986) in

the iid case. Denote the bandwidth recommended by Silverman as

d

Y2/

=1

birt = A(d, K )n= /()

2

where s7 are the component-wise sample variances, and A(1, K') = 1.06 and A(2, K') = 0.96 for
the Gaussian kernel K. See Silverman (1986, p. 87) for other values of A(d, K). In our case, the
Markov sampler is often positively dependent; hence it calls for a wider bandwidth. An ad hoc
rule is to choose the one in {jb" : j = 1,...,J} that gives the smallest corresponding estimated
L' error. From the limited simulations reported in the next section, it seems adequate to choose
J = 7. On the other hand, if one suspects that the Markov sampler is negatively dependent, choices
such as b7¢/j may be considered.

If the Markov sampler mixes quickly, the L! error plot should decay at rate n=2/(d+4)

. Large
values of I, (> 0.3) indicate that the sampler has not produced a satisfactory sample from 7(z),
due to the unstationarity of the sampler, the stickness of the sampler, or pure chance error. Markov
samplers aiming at the same target density can be compared by comparing their L' error plots.
We prefer Markov samplers with a low L! error (< 0.3) plot. However, false convergence signs can
be seen from the above plots if both the Markov sampler and the region A miss the same major
mode of 7(x).

When d is not small and we do not have good ideas about how to choose A, we are forced to either

choose A large and therefore require much computing power to evaluate fn(A), or alternatively, we

can select as many points z1, @9, ..., 2; as the computing power allows and evaluate

(Fulz;) — Og(2;)),



and the standardized
zj 1= /bl (Fn(x;) — Og(2;))/1/0g(;).

Note that under assumption G, we can show as did Rosenblatt (1970) that the z;’s are asymptoti-
cally independent normal, but their asymptotic variances might differ. Individual values of the z;’s
are informative: locations of z;’s with large values indicate positions of potential modes missed by
the current run of the sampler. To avoid false alarms due to the random fluctuation in the kernel
estimator, it is worth the effort to select more points around z;’s with large values and calculate
the z values for these new points. Large values for the new 2’s would confirm that there is indeed
a missing mode.

An alternative in dealing with the high dimensional situation is to combine our approach with
the multiple-chain approach. We may take a 1-dimensional summary statistic, produce multiple
runs of the sampler, and compare the L' errors between kernel estimators based on different runs
of the 1-dimensional summary statistic. However, if all the runs miss the same region of the sample
space projected to the direction of the 1-dimensional summary statistic or all the runs converge to
an incorrect density, the pairwise L! errors will not reveal that. See Figure 1 for the sequential
plot of the L' error between the kernel estimators based on two runs of a summary statistic in the
Ising model as in Gelman and Rubin (1992). Only the last 1000 samples in their paper are used.
The same bandwidth is used for both kernel estimators, and it is the bandwidth which minimizes
the L' error among {jb" : j =1,2,...,.J} where the combined sample variance from both runs is
used in 07"?, The estimated L' error in Figure 1 stays high around 1, indicating that the two runs

are not converging to the same target density.

4 EXAMPLES: BIMODAL TARGET DENSITIES

In this section, we investigate the performance of the proposed estimated L' error as a conver-
gence diagnostic statistics in the case of bimodal target densities. First, we give an approximate
“power” calculation when the Markov sampler fails to converge to the correct target density. Then
a simulation example is carried out where the target density is the bimodal mixture of two 2-
dimensional normals and two Metropolis Markov samplers are compared in terms of the proposed

estimated L' error.
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Figure 1: Sequential plot of estimated L' error of the kernel estimators based on the two runs of a
1-dimensional summary statistic in the Ising model- the same two runs as in Gelman and Rubin

(1992).

Approzimate “power” calculation

A bimodal 7(z) may be obtained by letting

m() = pimi() + pama(w) = O(ermi(2) + camz(a)) 1= bg(),

where weights p; + p2 = 1, and m1(2) and 7a(2) are unimodal densities. If 7(2)’s modes are

well-separated, then we may express 7 as

m(@) & prla, (2)mi(2) + pala, (2)m(2),

where Ay and A, are disjoint. If A is large enough to include both Ay and A, and if for a fixed
sample size n, our Markov sampler has been visiting the two modes with proportions ¢; and ¢, and

if within each mode the sampler mixes well, then

tu(2) & qimi(2) + gama(z), and 0 = 7 'qf + 5 ' g5

Hence since [, mi(z)dz ~ 1 fori=1,2,

L(A) = [ [fale) = dg(a)lda

11
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Figure 2: Kernel L! error against estimated Kernel L! error in the bimodal case for the range (0,8)

of estimated L1 error (a) and for the range (0,0.5) (b).

4

Jlasmi(e) + amale) - (i /e1 + i fea)g o)l da

[, o= ahjes + adfenealm@iis + [l = (ad/er + g fer)ealma( )
1 2

1 — (g1 /er + @3/ c2)erl + g2 — (g3 /e + 43/ e2)ea

4

4

4

a1 = 4 — aip1 /Pl + a2 — 43 — aip2/p1l.
Note that the true L' error of #(x) is

I(4) = /

~ [lam(e) + am(e) - (prm(e) + poma(e)lda

() — 7(a)|de

~ g —pil + g2 — p2l
= 2|l — pal

If the sampler mixes quickly, p1 = ¢ and pz =~ ¢2. Then [,(A) ~ 0 and fn(A) ~ 0. If the

sampler got stuck at the first mode, ¢; & 1 and ¢ ~ 0 and
L(A) = pa/p1, Tn(A) = 2(1 = 1),

When py/py is small, the second mode is a small bump, so as expected, not visiting mode 2 does
not hurt much (both I, and I, are small). When the masses of the two modes are comparable,
p2/p1 ~ 1 and 2(1 — p1) =~ 1, and we will see a big difference in the two estimates of 7(z). In
Figure 2 (a), we plot corresponding values of I,(A) and I,(A) calculated by the above formulas

when (p1, ¢1) takes different values on [0.1,0.9]%. The plot takes a curved cone-shape starting at the

12



Y/
y /////
,,,;7/;;;[,’ i

A

X R

% XX JALITRR
% ST
2055 S
. S
=
SISO
S O NS SS S S SSSSSSSSISESE
‘.:‘.‘,‘::,v e 0:“0.0:‘%:“‘.':.

= AN
N\
7 R
=
T i

===
=7 =
A
Mm%ft" X
""o" &‘d (IS A
':':::«:3“

X

A

AR
R
R
R
%

5
o
S
S\
"g}; 3
!

g

3
%
"
XX
"
KXXX
XXXX
HOO
KXXX

f
"
XX
A
o

=
= =
S
SESSEST RS
SIS
SIS SIS
S
S
=

:‘
KX
o
o
A
O’O
X

X
X
¢
W

R
X
A%
(O

o

3

“:::
599

X

%
X

XX
'0
o

X
55

KX

o
"‘0‘
%

XX
X
5
0

X

Figure 3: Target density in the simulations: mixture of two normals with identity covariance matrix

and mean vectors (0,0) and (5,5).

origin. Apparently I, can over-estimate I,, quite a lot, but fortunately, the over-estimation amount
is an increasing function of I,,. For example, an observed value around 2 for I, corresponds to the
range of I,, from 0.7 to 1.2. From the diagnostic point of view, an L' error of size either 0.7 or
1.2 certainly means non-convergence. On the other hand, in Figure 2 (b) we see that an observed
value around 0.3 for I,, corresponds to a much smaller range of I,, (from 0.2 to 0.35), and this range
decreases to (0.1, 0.12) when I,, is around 0.1,

Mizture of two 2-dimensional normals: some simulation results

For the target density of a mixture of two 2-dimensional normals, we now compare two Metropo-
lis samplers when two Gaussian jumping kernels are used. As shown in Figure 3, the target density

18
0 5
m(xz) = 0.5N( , )+ 0.5N( , ).
Let

g(x) = 0.5exp(—|z|*/2) + 0.5exp(—|z — 5|*/2), then 6§ = 1/(27) = 0.1592.

Based on a given symmetric jumping kernel ¢(z, dy), we use the Metropolis algorithm to simulate

as follows n samples from a Markov chain with target density =:

13



Step 1: Take 29 = (0,0).
Step 2: Given z;, simulate a jump candidate y for the next step from ¢(z;,dy) and accept the

jump y with probability min{g(y)/g(x;),1}. Let
41 = 2; +y if y is accepted; x;,41 = x; otherwise.

Step 3: Stop when ¢ = n + 1.

We will compare the following two jumping kernels

1/2 0 20.88 18
¢ (z,dy) = Nz, )dy, and q2(z,dy) = N (=, dy.
0 1/2 18 20.88

According to Gelman, Roberts, and Gilks (1994), the second sampler is “optimal”, and let us
call the first sampler “sticky”.

Simulations are carried out using a C-program. Both samplers were run for n = 5000 and the
first 1000 were discarded. A Gussian kernel is used in the kernel estimator. The integration in the
estimated L1 error is evaluated on A = [~2,7] x [~2, 7], with the number of grid points=50 x 50,
o = 0.8 is taken in 8 = ég, and nstep = 100. The evaluation of the estimated L' error started at
the 1100th iteration of the remaining 4000 iterations, or the 2100th of the original 5000 iterations.

Figure 4 shows that the “sticky” sampler is trapped at the mode (0,0), but the optimal sampler
visits the two modes with roughly equal amount of time. The kernel estimators in panels (c¢) and
(d) correspond to the bandwidths selected from {;jb"? : j = 1,..., 7} which minimize the estimated
L' error, based on the “sticky” and optimal samplers respectively. The kernel estimator from the
“sticky” sampler estimates the density at the (0,0) mode well since all 4000 samples are used, while
the kernel estimator from the optimal sampler splits the 4000 samples between two modes thus the
estimated density surface is less smooth.

Using data from iterations 1001 to 5000, Figure 5 (a) shows that for the optimal sampler,
the estimated L' error, which correspond to the selected bandwidth from {jb"% : j = 1,....7},
decreases from 0.72 at n = 2100 to 0.25 at » = 5000; while for the “sticky” sampler, the estimated
L' error stays high around 1.1 or 1.2, because it missed entirely the mode at (5,5). Therefore the
estimated L' error plot correctly diagnoses that the “sticky” sampler is sticky and the optimal

sampler mixes well. Figure 5 (b) shows that g is very much more biased for the “sticky” sampler

14
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Figure 4: Scatter plots of the simulated Markov samples (n=1001,...,5000) for the “sticky” sampler
(a) and the optimal sampler (b). Corresponding kernel estimates based on the “sticky” sampler (¢)

and the optimal sampler (d).

than for the optima sampler.

In Figure 6, the true L' errors at iterations n = 2100, 2200, ..., 5000 are plotted against the cor-
responding estimated L' errors for both the optimal and “sticky” samplers. Qverall, the estimated
L! error over-estimates the true L' error. However, for the group of points in the lower left corner
from the optimal sampler, the true and estimated L' errors are close to each other at the end of the
iteration since # estimates 6 well — the over-estimation percentage is around 5% at n = 5000. For
the group of points in the upper right corner from the “sticky” sampler, both true and estimated L!
errors are high and the estimated L' ertors over-estimate the true error by about 20% consistently.

Figure 6 is consistent with what is in Figure 2 which is based on approximate calculations.
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Figure 5: (a): Sequential plot of estimated kernel L' errors for the “sticky” sampler (dotted line)

and the optimal sampler (solid line), based on the simulated Markov samples (n=1001,...,5000).
(b): Sequential plot of the estimated normalization constant for the true § value (dashed line), the

“sticky” sampler (dotted line), and the optimal sampler (solid line).
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Figure 6: True L' error against estimated L' error at iterations n = 2100, 2200, ..., 5000 for the

“sticky” sampler (the cluster in the upper right corner) and for the optimal sampler (the cluster in

the lower left corner).
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5 CONCLUDING REMARKS

We may regard the approach in this paper as introducing additional information in the un-
normalized density to a single run Markov sampler. Since the estimated L! error does measure
in a very direct way how close the sample is to the target density, the proposed approach can
be used to compare different Markov samplers aiming at the same target density. For example,
Metropolis-Hastings algorithms with different candidate kernels. When the numerical evaluation
of the estimated L' error is not feasible, points should be chosen and the properly normalized
differences of the two density estimators should be monitored sequentially. Alternatively, we may
combine the proposed approach with the multiple-chain approach as discussed in Section 4. The
advantages of our approach seems to be: (a) when the Markov sampler mixes quickly, the statis-
tics we propose do stabilize sample-wise, while the multiple chain statistics in Roberts (1992) and
Liu et al (1992) are proved to stabilize in expectations only; (b) since the estimated L' error is a
meaningful measure comparable across different Markov samplers, it can also be used to compare
different samplers. It is worth noting, however, that the approach here does not rely on the Markov
property per se, but only the mixing property of the chain, while Roberts’, Ritter and Tanner’s,
and Liu et al’s proposals do take the Markov kernel into consideration.

Although the proposed diagnostic plot worked well in the example of the mixture of two 2-
dimensional normals, more simulations are needed in general situations. The plot should also
be compared with other diagnostic methods. Currently under investigation is the binned kernel
estimator for moderately high dimensions (d = 3,...10), and dimension reduction techniques such
as projection pursuit for high dimensions.

APPENDIX: PROOFS

Proof of Lemma 1: We use a common blocking technique in the form used in Yu (1993) to
translate the problem into that of iid blocks and then we employ the argument of Devroye (1988)
for the iid case.

Divide the sequence (X1, Xy, ...., X;,) into p,, blocks of size a, and a remainder block. Let H;,
T; and R. denote the indices of the odd blocks, even blocks and the remainder block, (&1, ...,&,)

be a sequence of independent blocks with the same within-block distribution structure as the X-
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sequence, i.e.
L(XZ',Z' S H]‘) = L(fi,i S H]‘), L(XZ',Z' S T]‘) = L(fi,i S T]‘),
but with (&,¢ € H;) independent for different j’s.
For j = 1,2, ..., iy, let
Yy = D0 b (K (e = Xi)/bal) = ()]
i€H,
and

Zi= Y b [K(|(x = &)/ba]) — EE(|(z — Xi)/bal)].

ieH,
Then for any ¢, = o(1) and b, %, /n = o(e,), by repeated use of the triangular inequality and for

n large,

P(|L, — El,| > €,)

PUSIE Y= E [15l1> a/2)
P12 = £ [15 201> e0/2) + maBlan)

The last inequality holds by Lemma 3.1 in Yu (1993, p. 717).

IN

IN

Note further that using Devroye’s notation for W; ; = (Z; — n(x))/n,

IN

o™ [ VTR G = X0 bal)lde+ B [ 57K (e = X0)/b)|de)

2a,n~" / K (1)) dt.

/ (W;; — EW,

IN

Hence by the martingale inequality used in Devroye (Lemma 2, 1988),
PSS 2 B [ S 71> eaf2) <2 exp(=pn /(125 [ |K[P).
J J
It follows that for n large,

P(IL, = EL| > ) < 2exp(~ /(128 [ [KIP) + Bl

Under Assumption GE, B(a,) < O(p®). For any € > 0, let ¢, = (nb?)~"/2c. If b, = n~" for some

b€ (0,1), we can choose p,, = n/(logn)° for any ¢ > 1, then a, = (logn)® and the following hold:

(b )™ = ofen ). D exp(—kpun (125 [ K1) < 20, 3 puflan) < .
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By Borel-Cantelli Lemma, I,, — EI, = o((logn)*/?/\/n) almost surely and for any ¢ > 1. O
Proof of Theorem 2: For the first statement, because for b, = Bn~/(d+), \/nbd =
O(n?/+4) it is enough to show that lim inf y/nbd ET,(A) > 0.
Note that
bias,(t) = FE7,(t)— 7(t)
= b [ K= ) balds = 7(1)
_ /(ﬂ(t by ) — 7 (1)K (|s])ds
- bn/s-W(t)zg'(|s|)ds+2—1bg/S'M(t)szf(|s|)ds(1+0(1))
_ 2-%2/S'M(t)sﬁ'(|g|)d$(1+0(1)).
The last equality holds because of the fact that [ s;K(|s|)ds = 0, and by the continuity of the

second derivatives of 7, and by the dominated convergence theorem since [ s;5; K (]s|)ds < oo.

Recall that bias(t) = 2= 1 BU+)/2 [ &/ An(t)sK(]s|)ds, thus

liminf +/nbd FI, = liminf\/nbd/EIn
n n A
liminf/ B/ nbd (7,(t) — m,())|dt
liminf/ E(/nbd(7,(t) — =(t))|dt
A| ( (Fn(1) (D)l

= liminf/| nbdbias,,(t)|dt
A

v

v

> /liminf |[\/nbdbias, (t)|dt (by Fatou’s Lemma)
A

= /bias(t)dt>0.
A

Since nb? = O(n*/(+1)) = o(n), then for any positive constant ¢, (logn)/?/\/n = o(1/1/nb?).
Hence
1JEL, = (I, — EL)/ElL +1
= /nbi(l, — FI,)/[\/nbiEL,]+1
o(y/nbd(logn)°/? [/n)/[\/nbd ET,] + 1 a.s. (by Lemma 1)

= las. 0O
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Proof of Theorem 3: Straightforward from the CLT for U-statistics for S-mixing sequences
in Yoshihara (1976) after noting that H,(z —y) = he(2 — y)/g(2)+ ho(z — y)/g(y) is a symmetric
kernel and that the integrability condition is satisfied under our assumption, and that

Eho(Xo = X;)/9(Xo) = Eho(Xo — X;)/9(X;) = 6. O

Proof of Theorem 5:
Rosenblatt’s (1970) proof is general enough to cover our case when the joint distributions have

atoms, except that we need to modify the variance calculation to take into account the atoms. Note

that

Var(#(r)) = (1) Var(K (e = X0)/b)
+a§:1— (k= 1)/m)Cov(K (| = X1)/ba), K (] = Xi)/ba )]

Cov((|(x — X1)/bal), K([(x = Xy)/bnl]))
= B(E(|(z~ X1)/bu)E(I(x = Xi)/bn])) = (E(K((x = X1)/b]))?

Letting Pr(ds,dt) denote the joint distribution of Xy and X} under stationarity, then
E(K(|(z — X1)/b,) K (|(z — X)/bn|))
= 622 [ [ K@ = )b K = 0/ba]) Pilds. dt)
_ b;Zd/ak(s)ﬂ(s)Kz(KJC — 5)/ba|)ds
+%“//%O—aM$M@Mﬂ@—$MMMﬂ@—ﬂMmm@M%ﬁ
= blag(e /A (1)) ds(1 + o(1)).

The last equality holds because 7w, aj and pj are continuous and by the dominated convergence

theorem since [ K?*(|s|)ds < co. Moreover, under Assumption (3, there is a p; € (0,1) such that

Cov( K (|(z = X1)/b,]). K(I(x = X1)/ba]))
< MpiVar(E(|(x = X1)/b.).

Thus
nbdVar(#,(2)) < ﬂ(x)/ K2(Js)ds(1 420 b,

k=1
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Since 7(x) is continuous, by the dominated convergence theorem, as n — oo,
nblvar(t,(z)) — ve.
We have shown in the proof of Theorem 2 that for b, = Bn~ /(9 as n — oo,

nbdbias,(z) = B bias, (x)/b? — bias(z).

Let
Ya(2) = Vabalta(z) = 7(a)]
= |\/nbi(#a(2) = Eda(2)) + \/nbi (E#(z) = 7(2))
Then

EY2(z) = nb?Var(#(z)) + nbibias?(z) — v, + bias?(z).
Similarly as in Rosenblatt (1970),
Yo(z) —p Yo(z)
where Y, =p |N(bias(z), v;)|. By Skorohod’s representation theorem, there exists
Yo (2) =p Yo(z) for n = 0,1,... and Y, (2) — Yo(z) a.s.

Obviously, Y’s are non-negative r.v.’s and EY2(x) — EYZ(z). It follows that
limsup E[Y,(z)— Yo(z)]?

< limsup EY2(z)+ EYE(x) — 2liminf E[Y,(z)Yo(2)]

< 2EY}(z)— 2E[liminf Y, (2)Yo(z)] (Fatou’s Lemma)

0,
which implies that

lim EY,(z)= lim EY,(z)= EYy(z)= EYy(z) =: e,.

n—oo n—oo

Since EY,(x) is uniformly bounded when z varies over a compact set A, by the dominated conver-

gence theorem again,

EIn(A):/I4EYn(x)d$—>/Aexdx:e(A). |
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