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Abstract

Local time processes parameterized by a circle, de�ned by the oc-

cupation density up to time T of Brownian motion with constant drift

on the circle, are studied for various random times T . While such

processes are typically non-Markovian, their Laplace functionals are

expressed by series formulae related to similar formulae for the Marko-

vian local time processes subject to the Ray-Knight theorems for BM

on the line, and for squares of Bessel processes and their bridges. For

T the time that BM on the circle �rst returns to its starting point

after a complete loop around the circle, the local time process is cycli-

cally stationary, with same two-dimensional distributions, but not the

same three-dimensional distributions, as the sum of squares of two

i.i.d. cyclically stationary Gaussian processes. This local time process

is the in�nitely divisible sum of a Poisson point process of local time

processes derived from Brownian excursions. The corresponding inten-

sity measure on path space, and similar L�evy measures derived from

squares of Bessel processes, are described in terms of a 4-dimensional

Bessel bridge by Williams' decomposition of Itô's law of Brownian

excursions.

1 Introduction

Let P� denote the probability distribution and associated expectation op-
erator governing a one-dimensional Brownian motion (Bt; t � 0) started at
B0 = 0, with drift �. So the P� distribution of Bt is Gaussian with P�Bt = �t

and P�[(Bt � �t)2] = t. Let (
�
Bt; t � 0) be the BM on a circle of unit cir-

cumference obtained as
�
Bt = Bt mod 1, where the circle is identi�ed with

[ 0; 1). Let (Lx
t ; x 2 R; t � 0) be the usual bicontinuous local time process

of B, normalized as occupation density relative to Lebesgue measure. The

corresponding local time process for
�
B is (

�
L
u
t =

P
z2ZL

u+z
t ; 0 � u < 1) where

Zis the set of integers. For a subinterval I of R, let C+(I) denote the space
of non-negative continuous paths with domain I. For a random time T , set
�
LT = (

�
L
u
T ; 0 � u < 1), and view

�
LT as a C+[ 0; 1) valued random path. This

paper describes the P� distribution of
�
LT on C+[ 0; 1), for various random

times T , by a combination of three methods:
1) decomposition of the Brownian path by excursion theory;
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2) the Ray-Knight description of various linear local time processes in
terms of squares of Bessel processes;

3) application of series formulae for the Laplace functionals of squares of
Bessel processes.

Following Williams [66, 67, 68], methods 1) and 2) have been developed
and applied by several authors. See for instance [51, 61, 40], and further
work cited in [61]. Method 3), which is described in Section 2, is a substitute
for the traditional approach to computing Laplace transforms of additive
functionals of BM via solutions of a Sturm-Liouville equation, as presented
for example in [23, 34, 24, 51, 6]. Series formulae for solutions of Sturm-
Liouville equations are well known to analysts [42, 25, 9]. But this method
has been neglected by probabilists, even though it greatly simpli�es the com-
putation of moment generating functions of stopped additive functionals of
one-dimensional di�usions. Such applications, indicated briey in Sections
2 and 6 of this paper, will be treated in more detail elsewhere [53]. As in-
dicated in [50], these techniques can also be applied to analyse local time
processes de�ned by di�usions on a network as considered in [3]. The circle
is the simplest example where the Markovian properties of linear local time
processes are lost due to the feedback e�ect of a loop [12].

For a constant time t, Bolthausen [5] showed that as t !1 the P0 dis-

tribution of (
�
Lt� t)

p
t on C[ 0; 1) converges weakly to a cyclically stationary

Gaussian process (2bu � 2
R 1
0 bvdv; 0 � u � 1) where b is a standard Brown-

ian bridge. Leuridan [40] used methods 1) and 2), as developed in [51], to

describe the P0 distribution of
�
LT for T a hitting time or an inverse local

time of
�
B, and to recover Bolthausen's Gaussian limit. The process

�
LT is

not cyclically stationary for a �xed time T , nor for any of the random T 's
considered by Leuridan. A central result of this paper is the following:

Proposition 1 Let T� = infft : jBtj = 1g, the time when �
B �rst returns to

0 by a complete loop around the circle, so
�
L
u
T� = Lu

T� + Lu�1
T� ; 0 � u < 1: For

each � 2 R, the P� distribution of
�
LT� on C+[ 0; 1) is cyclically stationary,

reversible, and in�nitely divisible, with exponential marginals.

Proposition 1, which is proved in Section 3, is a circular analog of the follow-
ing result for linear BM:
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Proposition 2 For each � > 0, the P� distribution of (Lu
1; 0 � u < 1)

on C[ 0;1) is stationary, reversible, and in�nitely divisible, with exponential
marginals.

See [44, 51, 46] for similar variations of the Ray-Knight theorems from which
Proposition 2 is easily obtained along with this more precise description:

(Lu
1; 0 � u <1;P�)

d
= (Y 2(u) + Z2(u); 0 � u <1; ~P�) (1)

where
d
= denotes equality in distribution of processes on C[ 0;1), and ~P�

governs (Y (u); u � 0) and (Z(u); u � 0) as two i.i.d. stationary Ornstein-
Uhlenbeck processes which are centered Gaussian with covariance function
~P�[Y (u)Y (v)] = (2�)�1e��jv�uj. For a vector of non-negative random vari-
ables (V1; � � � ; Vn) de�ned on some probability space (
;F ; P ), call the dis-
tribution of (V1; � � � ; Vn) multivariate �2 with d degrees of freedom if it is the
distribution of the sum of squares of d independent copies of a vector of
centered jointly Gaussian variables, say (Z1; � � � ; Zn), for some d = 1; 2; � � �.
In particular, say that the distribution of (V1; V2) is �2(d; �; �2) if V1 and
V2 have a bivariate �2 distribution with d degrees of freedom, and common
mean � and correlation �2. Then Z1 and Z2 have common variance �=d and
correlation �. In terms of Laplace transforms, the P distribution of (V1; V2)
is �2(d; �; �2) i� for �i � 0

P exp(��1V1 � �2V2) =
�
1 + �1� + �2� + (1� �2)�2�1�2

�� d
2 (2)

See for instance [28, 8]. According to (1) for 0 � u < v <1
the P� distribution of (Lu

1; L
v
1) is �

2(2; ��1; e�2�(v�u)) (3)

Proposition 2 implies the bivariate �2 distribution is in�nitely divisible for
all choices of the parameters, a result found analytically by Vere-Jones [64],
who gave formulae for the corresponding density and L�evy measure. See
also [27, 41] for related derivations of the multivariate �2 distribution from
occupation times of birth and death processes, and [18] regarding conditions
for in�nite divisibility of the multivariate �2 distribution. In view of the
close parallel between Propositions 1 and 2, it is natural to expect a �2

representation like (1) for the circular local time process
�
LT�. It will be

shown that for all � 2 R and 0 � u � v < 1

the P� distribution of (
�
L
u
T�;

�
L
v
T�) is �

2(2; ��; �
2
�(v � u)) (4)
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where �0 = 1, �20(p) = 1� 2p�p with �p = 1� p, and for � 6= 0

�� = ��1 tanh �; �2�(p) = 1� 2 sinh(p�) sinh(�p�)

cosh(�) tanh2(�)
(5)

But the parallel stops here. It turns out that for each �

the P� trivariate distributions of
�
LT� are not trivariate �2 (6)

This follows by comparison of the well known determinant formula for the
Laplace transform of the multivariate �2 distribution with the Laplace trans-

form of the �nite-dimensional distributions of
�
LT�, which can be described as

follows (Corollary 10 and Proposition 11): for every �nite subset F of [0; 1),
and �u � 0

P0 exp

 
�X

u2F
�u

�
L
u
T�

!
=

0
@1 + 1

2

X
A�F

�
�(A)

Y
u2A

(2�u)

1
A
�1

(7)

where
P

A�F is a sum over all non-empty subsets A of F , and
�
�(A) is the

product of the spacings around the circle between points of A:

�
�(fu1; � � � ; ung) =

nY
k=1

(uk � uk�1) (0 � u1 < � � � < un < 1) (8)

where u0 = un� 1. The cyclic stationarity of
�
LT� under P0 is evident in this

formula by the invariance of
�
�(A) under cyclic shifts of A. For � 6= 0 the

corresponding formula for P� is obtained by the following modi�cation of the
right side of (7): replace the 1

2 by (2 cosh �)�1, and modify the de�nition (8)

of
�
�(A) by replacing each factor (uk � uk�1) by ��1 sinh(uk � uk�1)�.
The existence of a cyclically stationary Brownian local time process was

suggested by a problem about random mappings posed by Steve Evans, and
the Brownian bridge asymptotics for random mappings of Aldous-Pitman

[1]. See [2] for details. The process that arises in this setting is
�
LT�1 where

T�1 is the hitting time of �1 by B governed by P0. Section 5 considers the

distribution of
�
LT for various random times T including T�1. It appears that

none of these local time processes
�
LT has the two-sided Markov property.
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Kaspi-Eisenbaum [12] show this for one particular T , and similar arguments
apply to the various other T 0s considered here. See also [19, 29] regarding the
circular Ornstein-Uhlenbeck process, which is the two-sided Markov cyclically
stationary Gaussian process with covariance function of (u; v) equal to (2�(1�
e��))�1(e��p+e��(1�p)) for p = jv�uj. It is curious that this process does not
seem to arise in the description of circular Brownian local times. From (4)
one can construct a cyclically stationary Gaussian process with continuous
paths, the sum of squares of two i.i.d. copies of which has the same two-

dimensional distributions as
�
LT�. But even this process is not the circular

Ornstein-Uhlenbeck process. As an immediate consequence of Proposition 1
there is the following:

Corollary 3 For each � � 0 there is a di�erent one parameter family of in-

�nitely divisible distributions on C+[0; 1), denoted (
�
Q

�
� ; � > 0), such that

�
Q

1
�

is the P� distribution of the normalized circular local time process (� coth �)
�
LT�

with mean 1. Under
�
Q

�
� the process (Xu; 0 � u < 1) is cyclically stationary

and reversible with gamma (�; 1) marginals.

To illustrate, replacing the power �1 by �� in (7) gives the
�
Q

�
0 joint

Laplace transform of (Xu; u 2 F ). The structure of the in�nitely divisible

family (
�
Q

�
0; � > 0) is exposed in Section 4 by an explicit description of the

corresponding L�evy measure on C[0; 1). The basic idea is that a process

with distribution
�
Q

�
0 can be represented as an in�nite sum of random pulses

where a pulse is a continuous function on the circle which is strictly positive
on some open interval and vanishes on the complement of this interval. The
random pulses are the points of a Poisson point process on C+[0; 1) with

intensity measure �
�
M for a �-�nite L�evy measure

�
M on C+[0; 1) which is

concentrated on pulses. A similar description can be given for any �, by
following the method of [51], where the L�evy measure corresponding to the
Ornstein-Uhlenbeck process in Proposition 2 is described. To be more precise,
make the following de�nition:

De�nition 4 Say that a C+(I) valued random variable Z = (Zu; u 2 I)
admits a strong L�evy-Itô (�) representation if Zu =

P
i Z

u
i for all u 2 I

almost surely, where the Zi are the points of a Poisson process on C+(I)
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with mean measure �, de�ned with Z on some common probability space
(
;F ; P ).

The distribution Q of Z on C+(I) is then the in�nitely divisible distribution
determined by the L�evy-Khintchine formula:

P exp(�mZ) = Q exp(�mX) = exp
�
�(1� e�mX)

�
(9)

where m is a bounded positive measure on I, and for W = X or Z, mW =R
I Wum(du). In Section 4, after some development of results of [51] concern-
ing the L�evy-Itô representation of squares of Bessel processes, it is shown that

under P0 the circular local time process
�
LT� admits a strong L�evy-Itô (

�
M)

representation for a L�evy measure
�
M which is described explicitly in terms

of 4-dimensional Bessel bridges. In the Poisson (
�
M) point process of pulses

whose sum is
�
LT�, each pulse is an increment

�
LS �

�
LR of the C[ 0; 1) valued

local time process derived from an excursion interval (R;S) of the basic
Brownian motion B, that is an interval such that BR = BS = y for some y,
and Bt 6= y for t 2 (R;S). These excursion intervals are de�ned to be at
intervals of the past maximum process of B if BT� = 1, and at intervals of
the past minimum process of B if BT� = �1. Call a pulse long if it is strictly
positive over the whole circle, and otherwise call it short. Ignoring events
of probability zero, the pulse associated with an excursion interval (R;S) is

long if maxR�t�S Bt � minR�t�S Bt � 1, that is if
�
B visits every point on

the circle during the interval [R;S]. Summing the pulses of the local time
process over long and short excursions yields an interesting decomposition of
�
LT� into two independent in�nitely divisible cyclically stationary processes:
�
LT� =

�
Lshort +

�
Llong. To illustrate, the Laplace transform of the exponential

distribution of
�
L
u
T� admits the factorization (1 + �)�1 = �short(�) �long(�)

where �short(�) = P0 exp(��
�
L
u
short) is given by the formula

�short(�) = e

 p
2 + ��p

�p
2 + � +

p
�

! 1+�p
�
p
2+�

(10)

The density of the corresponding L�evy measure is K1(x)e
�x where K1(x)

is the modi�ed Bessel function. The decomposition of T� into time spent
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during long and short excursions yields some novel in�nitely divisible laws
on (0;1) with Laplace transforms involving hyperbolic functions.

Finally, some open problems are mentioned in Section 7.

2 Squares of Bessel Processes

For d = 1; 2; � � � a process (Rt; t � 0) is a d dimensional Bessel process started
at r or BESd

r for short, if (R2
t ; t � 0) is the sum of squares of d independent

Brownian motions started at points x1; � � � ; xd with Pi x
2
i = r2. For r with

r2 = x, the process (R2
t ; t � 0) is then a squared d dimensional Bessel process

started at x, or BESQd
x. The distribution of a BESQd

x process on the space
C+[0;1) of continuous non-negative paths is denoted by Qd

x. Following
Shiga-Watanabe [60], the de�nition of Qd

x extends to all real d � 0 via the
in�nite divisibility properties of the two parameter family Qd

x; x � 0; d � 0.
See also [51, 56]. Let (Xu; u � 0) denote the co-ordinate process on C+[0;1).
As shown by Pitman-Yor [51, 52], for a positive measure m on (0;1)

Qd
x exp

�
�
Z 1

0
Xum(du)

�
= 	1

� d
2 exp

�
�x	0

2	1

�
(11)

where 	0 = 	0(m) and 	1 = 	1(m) can be expressed in terms of the unique
solution �m of the Sturm-Liouville equation

1
2
�00 = m � � on (0;1) with �(0) = 1; 0 � � � 1; (12)

To be precise,

	1 =
1

�m(1)
;

	0

	1
= ��0m(0) (13)

where �0m is the right derivative of �m, and �m(1) is the limit of �m at 1.
It is known to analysts [25, 9] that under mild conditions on m solutions of
Sturm-Liouville equations such as (12) can be expressed as in�nite series of
terms obtained from appropriate iterated integrals with respect to m. See
[53] for discussion of such formulas and their relation to the series for the
	i(m) presented in the following proposition:

Proposition 5 For each positive measure m on [0;1) such that

m[0;1) <1 and
Z 1

0
xm(dx) <1 (14)
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formula (11) holds with 	i as follows for i = 0 or 1:

	i(m) = i+
1X
n=1

min2
n where (15)

min =
Z
m(du1)

0�u1<���
� � �

Z
m(dun)

���<un<1
ui1

nY
k=2

(uk � uk�1) (16)

For n = 1 the empty product in (16) equals 1. So the �rst few min are

m01 = m[0;1); m02 =
Z 1

0
m(du)

Z 1

u
(v � u)m(dv);

m11 =
Z 1

0
um(du); m12 =

Z 1

0
m(du)

Z 1

u
u(v � u)m(dv)

Proof. Take (15) as the de�nition of the 	i(m). It can be shown directly
that (11) holds, without consideration of the Sturm-Liouville equation. Note
�rst that it is enough to show (11) for x = 0 and some d > 0, and for d = 0
and some x > 0. For a discrete measure m =

P
u2F �u�u, where F is a �nite

subset of [0;1) and �u is a unit mass at u, the 	i de�ned by (15) reduce to

	i

 X
u2F

�u�u

!
= i+

X
A�F

�i(A)
Y
u2A

2�u (17)

where
P

A�F is a sum over all non-empty subsets A of F , and

�i(fu1; � � � ; ung) = ui1

nY
k=2

(uk � uk�1) (0 � u1 < � � � < un < 1)

The special case of (11) for x = 0; d = 2, and such a discrete m, appears
in Problems 5 and 6 of Section 2.8 of Itô-McKean [23], solutions of which
appear in Section 6.4B of [26]. The discrete form of (11) with d = 0; x > 0
can be established by the method of [23], that is induction on the number of
elements of F , using the recursion derived from the Markov property of Qd

x

that appears in formulae (1.20) and (1.21) of Shiga-Watanabe [60]. Or see
formula (2.j) of [51], which should be corrected as follows: on the second last
line of page 431, �i+1 should be ~�i+1. Formula (11) for a bounded positive
measure m with �nite �rst moment is obtained from the discrete case by
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straightforward approximation. In particular, elementary estimates show
that the series for 	i converge rapidly provided m has a �nite �rst moment.
(c.f. Dym-McKean [9], Sec. 5.4, Exercises 1-3). 2
The Ray-Knight Theorems. The solution of the problems of [23] cited
above for a discrete m yields also the following Laplace transform, where
T1 = infft : Bt = 1g: for every bounded m with support contained in [0; 1],
and � > 0,

P0 exp
�
��

Z 1

0
L1�u
T1

m(du)
�
=

1

	1(�m)
(18)

Combined with (11) for x = 0; d = 2, this amounts to the theorem of Ray-
Knight [30, 54] that

(L1�u
T1

; 0 � u � 1;P0)
d
= (Xu; 0 � u � 1;Q2

0) (19)

where
d
= denotes equality of distributions on C+[0; 1]. Closing up the gaps

between positive excursions of B to obtain a reecting BM (see [23], Sec.
2.11, or [58] III.22) yields the result of Knight [31] that also

(L1�u
T� + Lu�1

T� ; 0 � u � 1;P0)
d
= (Xu; 0 � u � 1;Q2

0) (20)

Consequently,

formula (18) holds also with L1�u
T� + Lu�1

T� instead of L1�u
T1

(21)

Let (�`; ` � 0) be the right-continuous inverse of the process (L0
t ; t � 0) of

local times of B at zero. Using the formula of Williams [66] which is derived
in Section 6.4C of [26], an argument parallel to the derivation of (18) shows
that for every bounded positive measurem on [0;1) with �nite �rst moment,
and � > 0,

P0 exp
�
��

Z 1

0
Lx
�`
m(dx)

�
= exp

 
� `

2

	0(�m)

	1(�m)

!
(22)

Combined with (11) for d = 0; x = `, this amounts to the Ray-Knight theo-
rem that

the P0 distribution of (Lu
�`
; u � 0) is Q0

` (23)

Some further applications of these formulae are indicated briey in Section
6. See also [68, 45, 43, 44, 59, 46, 56, 71, 61, 65, 48] for other approaches
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to the Ray-Knight theorems and related connections between squared Bessel
processes and Brownian local times.
Examples. For m(dy) = f(y)dy write 	i(f) and fin instead of 	i(m) and
min. Set f(y) = 0 if y < 0. For a; b; c > 0, let fa;b;c : x ! af((x � c)=b).
Then for i = 0 or 1 and n = 1; 2 � � �, (15) and (16) imply

(fa;b;c)in = anb2n�i(fin + icf0n) (24)

	i(fa;b;c) = b�i	i(ab
2f) + ic	0(ab

2f) (25)

For m the uniform distribution on (0; 1) with density 1(0;1), the integrals (16)
and series (15) are easily evaluated as follows

(1(0;1))0n =
1

(2n � 1)!
; (1(0;1))1n =

1

(2n)!

	0(�1(0;1)) =
p
2� sinh

p
2�; 	1(�1(0;1)) = cosh

p
2� (26)

For the indicator of an interval (c; d), say 1(c;d)(x) = 1(0;1)
�
x�c
d�c

�
, (25) yields

	0(�1(c;d)) =
p
2� sinh(

p
2�(d� c)) (27)

	1(�1(c;d)) = cosh(
p
2�(d� c)) + c	0(2�1(c;d)) (28)

Substituting these expressions in (18) and (22) yields formulae for the Laplace
transform of the time spent by B in (c; d) up to time T1 for 0 � c < d � 1,
or up to time �` for 0 � c < d < 1. Similar formulae can be obtained
with one or both of c and d negative. Another variation is obtained with
(21). See [69, 32, 34, 51, 13] for instances of these formulae, and further
variations which can be recovered by the same method. Formula (36) in the
next Section gives an application on the circle. As a general rule, any explicit
solution of a Sturm-Liouville problem like (12), of which a great many are
known, (see e.g. [9] Exercise 5.4.15, [51, 53]), typically yields an evaluation
of one or both of the basic functions 	i(m) for some m. Such 	i can then be
transformed to obtain other 	i as above, without any further discussion of
boundary conditions for the Sturm-Liouville equation. See also [9], Section
6.9, for some more sophisticated transformations related to Krein's theory of
strings.
Formulae for Bessel Bridges. For x; y; d � 0 let Qd

x!y denote the dis-
tribution on C+[0; 1] or C+[0; 1) of the BESQd bridge obtained from the
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Qd
x conditional distribution of (Xu; 0 � u � 1) given X1 = y. According to

[51, 52], for m with support contained in [0; 1]

Qd
x!0 exp

�
�
Z 1

0
Xum(du)

�
= 	� d

2 exp

 
�x

2

 
	̂1

	
� 1

!!
(29)

where 	̂1 = 	̂1(m) = 	1(m̂) for m̂ the image of m via the map u ! 1 � u,
and 	 = (	1	̂1 � 1)=	0. It can also be shown that

	̂1(m) = 1 +
1X
n=1

m̂n2
n ; 	(m) = 1 +

1X
n=1

mn2
n (30)

where both m̂n and mn are given by expressions like (16). To be precise,
m̂n = m01n and mn = m11n where, for i = 0 or 1, mi1n is de�ned like min

in (16) but with an extra factor (1 � un) in the integrand. In particular, to
complement (26),

	̂1(�1(0;1)) = cosh
p
2�; 	(�1(0;1)) =

sinh
p
2�p

2�
(31)

3 The Circular Local Time Process at T�
The following lemma is a key ingredient in the proof of Proposition 1.

Lemma 6 (Knight [31]) Let G be the time of the last zero of B before time
T�. Under P0 governing B as a Brownian motion with zero drift,
(i) L0

T� has standard exponential distribution: P0(L0
T� 2 d`) = e�`d`; ` > 0.

(ii) Given L0
T� = ` the processes (Lu

G; 0 � u � 1) and (L�uG ; 0 � u � 1) are
independent with identical distribution Q0

`!0

(iii) The process (LjujT� � L
juj
G ; 0 � u � 1) has distribution Q2

0!0

(iv) The two processes (Lv
G;�1 � v � 1) and (L

juj
T� � L

juj
G ; 0 � u � 1) and

the random sign BT� 2 f�1;+1g are mutually independent.

Remark 7 The process in (iii) is the process of occupation densities of the
path fragment (jBjG+s; 0 � s � T��G). As shown by Williams [66, 67, 68],
this fragment has the distribution of a BES3

0 process stopped at its �rst hit
of 1.
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Translating Lemma 6 into terms of the circular local time process yields
the next lemma. See also Proposition 21 for a generalization derived by

excursion theory. Note that G is also the last zero of
�
B before time T�,

and that
�
L
0
T� = L0

T�. Let P � Q denote convolution of two distributions on
C+[0; 1), that is the distribution of Y + Z for independent random elements
Y and Z with distributions P and Q.

Lemma 8 Under P0

(i) The distribution of
�
LG on C+[0; 1) is

R1
0 Q0

`!0 � Q̂0
`!0 e

�`d` where Q̂0
`!0

is image of Q0
`!0 via time reversal.

(ii) The distribution of
�
LT� �

�
LG on C+[0; 1) is Q2

0!0

(iii) The two processes
�
LG and

�
LT� �

�
LG and the random sign BT� are

mutually independent.

(iv) The distribution of
�
LT� is Q2

0!0 � (
R1
0 Q0

`!0 � Q̂0
`!0e

�`d`)

(v) The process
�
LT� and the random sign BT� are independent.

Proof. Part (i) follows from parts (i) and (ii) of Lemma 6 by conditioning on
L0
T�. Parts (ii) and (iii) follow from (ii) and (iii) of Lemma 6 and reversibility

of Q2
0!0. Parts (iv) and (v) follow from parts (i), (ii) and (iii). 2

Notation. For the rest of this section, let m denote an arbitrary bounded
positive measure on [0; 1), and let 	0;	1; 	̂1;	 be de�ned in terms of m as
in (15) and (30). For a process (Xu; 0 � u < 1) let mX =

R 1
0 m(du)Xu.

Proof of Proposition 1. Consider �rst the case � = 0. Part (iv) of Lemma
8 combined with (29) allows the following computation:

P0 exp(�m
�
LT�) =

�
Q2

0!0e
�mX

� Z 1

0

�
Q0

`!0 e
�mX

� �
Q̂0

`!0 e
�mX

�
e�`d`

= 	�1
Z 1

0
d` exp

"
� `

2

 
	̂1

	
� 1

!
� `

2

�
	1

	
� 1

�
� `

#
=

2

	1 + 	̂1

Take m to be discrete and use (17). The result is (7), since for a �nite

subset A of [0; 1),
�
�(A) = �1(A) + �1(Â) where Â is the reversal of A.

The cyclic stationarity of
�
LT is now apparent, and reversibility is obvious

for � = 0. In�nite divisibility follows easily from the same decomposition,
using standard ideas of subordination, and the in�nite divisibility of the

13



exponential distribution of
�
L
0
T and the various squared Bessel components.

See formula (51) in the next section for the consequent expression for the
L�evy measure. For � 6= 0 the Cameron-Martin formula (see e.g. [16],I.11)

combined with the independence of
�
LT� and BT� yields

P� exp
�
�m �

LT�

�
= cosh(�)P0 exp

�
�(m+ 1

2
�2�)

�
LT�

�
(32)

where � is Lebesgue measure on [0; 1). This formula and the cyclic station-

arity of
�
LT� under P0 imply that

�
LT� is cyclically stationary under P� too.

The same goes for reversibility. The P� distribution of
�
LT� can be shown

to be in�nitely divisible by using the Cameron-Martin formula to obtain a
variation of Lemma 8 for P�. See also Remark 15 in Section 4. 2

De�nition 9 For a measure m on [0; 1) de�ne
�
	 =

�
	(m) by

�
	 = 1

2
(	1 + 	̂1) = 1 + 1

2

1X
n=1

�
mn 2

n (33)

where
�
mn= m1n + m̂1n, that is

�
mn=

Z
m(du1)

0�u1<���
� � �

Z
m(dun)

���<un<1

nY
k=1

(uk � uk�1) where u0 = un � 1. (34)

From the proof of Proposition 1 and the formulae of Proposition 5, there is
the following companion to the Ray-Knight formulae (18), (21) and (22):

Corollary 10

P0 exp
�
��m �

LT�

�
=
� �
	(�m)

��1
=

 
1 + 1

2

1X
n=1

�
mn (2�)

n

!�1
(35)

To illustrate, for m(du) = f(u)du, formula (35) gives the Laplace transform

of
R T�
0 f(

�
Bt)dt. If U1; � � � ; Un are i.i.d with density f=jjf jj, where jjf jj =R 1

0 f(u)du, then
�
mn equals jjf jjn=n! times the expected product of the n

spacings around the circle between points of the random set fU1; � � � ; Ung.

14



Occupation time of an interval on the circle. Consider the occupation

time A(I; t) =
R t
0 1(

�
Bs 2 I)ds for an interval I on the circle. From (35),

(27),(28), for every interval I of the circle of length p, the time A(I; T�) that
�
B spends in I up to time T� has the same in�nitely divisible distribution
with Laplace transform

P0 exp(��A(I; T�)) =
�
cosh(p

p
2�) + 1

2(1 � p)
p
2� sinh(p

p
2�)

��1
(36)

According to Theorem 4.2.16 of Knight [34], which follows similarly from
(21), (27) and (28), the P0 Laplace transform of the time spent by jBj in
[0; p] before time T� is given by the right side of (36) with the 1

2
replaced

by 1. That the 1
2
is needed in (36) can be checked as follows: as p ! 0,

A([0; p]; T�)=p converges a.s. to L0
T� with Laplace transform 1=(1 + �). But

the time spent by jBj in [0; p] before time T� must be normalized by 2p
instead of p to obtain the same limit.

The Laplace functional of the P� distribution of
�
LT�. For the circular

Brownian motion with drift, a �rst formula for the Laplace functional of the

P� distribution of
�
LT� is obtained by combining (32) and (35). But there is

a more interesting formula which lies a little deeper:

Proposition 11 For � 6= 0:

P� exp
�
�m �

LT�

�
=

 
1 + (2 cosh �)�1

1X
n=1

�
mn;� 2

n

!�1
where (37)

�
mn;�= ��n

Z
m(du1)

0�u1<���
� � �

Z
m(dun)

���<un�1

nY
k=1

sinh(uk � uk�1)� (38)

with u0 = un � 1.

Proof. Formula (37) will be obtained by development of the right side of
(32). Consider �rst m = �0�0 + �u�u where �u is a unit mass at u. Let
� = 1

2�
2� where � is Lebesgue measure on [0; 1). Then from (33)

P0 exp
�
��0

�
L
0
T� � �u

�
L
u
T� � 1

2�
2T�

�
=

 
1 + 1

2

1X
n=1

(�0�0 + �u�u + �)�n 2
n

!�1

15



where (�0�0 + �u�u + �)�n denotes the quantity
�
mn in (33) for the measure

m = �0�0+�u�u+�. Let �n denote the coe�cientmn in (30) for m = �, and
let �u = 1� u. The quantity (�0�0 + �u�u + �)�n can be evaluated as follows:

for n = 1:
�
�1 +�0 + �u

for n = 2:
�
�2 +(�0 + �u)�1 + �0�u u�u

for n = j + 2 � 2

�
�n +(�0 + �u)�n�1 + �0�u u �u

jX
k=0

u2k�k �u
2j�2k�j�k

The summation index k counts how many ui in the repeated integral (34) for
(�0�0+�u�u+�)�n fall in the interval (0; u). The powers of u and �u appear by
making the appropriate linear changes of variables to replace each integral
over [0; u] or [u; 1] by an integral over [0; 1]. Summing over n, the desired
Laplace transform is found to be

� �
	(�) + (�0 + �u)	(�) + 2�0�uu�u	(u

2�)	(�u2�)
��1

Combined with (26), (31) and (32), this yields the proposition for for m =
�0�0 + �u�u. A similar calculation yields the result for a general discrete m,
and the argument is completed for an arbitrary �nite measure m on [0; 1) by
a routine weak approximation. 2

Example 12 Let m = �� for a positive scalar � and Lebesgue measure �
on [0; 1). From (32)

P� exp
�
��� �

LT�

�
= P� exp(��T�) = cosh �

cosh
p
2� + �2

Comparison with formula (38) yields the identity

cosh
p
2� + �2 = cosh � + 1

2

1X
n=1

1

n

�
2�

�

�n
fn(�) (39)

where f1(�) = sinh(�) and for n = 2; 3; � � �

fn(�) =
Z
� � �

Z
vi�0;�n

1 vi=1

nY
i=1

f1(vi�)dv1 � � � dvn�1 (40)
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For instance,

f2(�) =
1

2�
(� cosh � � sinh �); f3(�) =

1

8�2
(�2 sinh � � 3� cosh � + 3 sinh �)

A generalization of the identity (39). To check (39) directly, consider
functions fn(�) de�ned by the integral formula (40), for an arbitrary contin-
uous function f1 de�ned on [0; 1] instead of f1(�) = sinh �. The fn(�) are
then determined by

fn(�) =
Z 1

0
vn�2fn�1(v�)f1(�v�)dv (41)

where �v = 1� v. Let

F (�; �) =
1X
n=1

fn(�)�
n (42)

Then easily from (41)

F (�; �) = �f1(�) + �
Z 1

0
v�1F (v�; v�)f1(�v�)dv (43)

Retracing this argument shows that if a function F (�; �) is of the form (42)
for some sequence of continuous functions fn(�), and F (�; �) satis�es (43),
then (41) and (40) hold. Returning to consideration of (39), di�erentiation
with respect to � shows that (39) is equivalent to

F (�; �) =
��p

�� + �2
sinh

p
�� + �2 for f1(�) = sinh � (44)

This is veri�ed by checking (43), which, after setting � =
p
�� + �2, reduces

to the elementary formula

Z 1

0
sinh(v�) sinh(�v�)dv =

� sinh� � � sinh �

�2 � �2
(45)

4 L�evy-Itô Representations

If a probability measure Q and a �-�nite measure � on C+(I) are related
by the L�evy -Khintchine formula (9), let us say simply that Q is in�nitely
divisible with L�evy measure �. Assume that � places zero mass on the path

17



that is identically zero. Then Q and � determine each other uniquely. As
shown in Pitman-Yor [51], it follows from (11) and (29) that

Qd
x is in�nitely divisible with L�evy measure xM + dN (46)

Qd
x!0 is in�nitely divisible with L�evy measure xM0 + dN0 (47)

for some L�evy measure measures M;N on C+[0;1) and M0 and N0 on
C+[0; 1]. These L�evy measures will now described by a development of ideas
from [51]. The following results involve the Ray-Knight descriptions of linear
Brownian local times, and Williams' decomposition of a Brownian excursion,
([70],II.67). The basic idea can be stated informally as follows. When a Brow-
nian local time process indexed by v 2 I is decomposed as a sum of pulses
derived from various excursions, the pulse derived from either an excursion
above x with maximum level y or an excursion below y with minimum level
x, typically has the following distribution Px;y:

De�nition 13 For a subinterval I of R, and x; y 2 I with x < y, let Px;y be
the probability distribution on C+(I) of a process Xx;y that vanishes o� the
interval (x; y), and on (x; y) is a BESQ4 bridge from 0 to 0 of length (y�x):

Xx;y(v) = (y � x)S4

 
v � x

y � x

!
1(x � v � y) (v 2 I) (48)

where S4 has distribution Q4
0!0.

Proposition 14 The L�evy measures de�ned by (46) and (47) are

M = 1
2

Z 1

0
dy

P0;y

y2
; N = 1

2

Z 1

0
dx
Z 1

x
dy

Px;y

(y � x)2
(49)

M0 =
1
2

Z 1

0
dy
P0;y

y2
; N0 =

1
2

Z 1

0
dx
Z 1

x
dy

Px;y

(y � x)2
(50)

Proof. As shown in [51], a strong L�evy-Itô (`M) representation of the
BESQ0

` distributed process in (23) is obtained by decomposing the C+[0;1)
valued local time process L�`

as the sum of pulses derived from excursions
of B from 0. Consequently (Theorem (4.2) of [51]), M is the distribution
of the total local time pulse generated by a Brownian excursion ("t; 0 �
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t � �) distributed according to Itô's law for positive excursions of B from
0. William's description of ("t; 0 � t � �) given max0�t�� "t = y, in terms
of pasting back to back two independent BES3

0 processes (each run till it
�rst hits y), implies the formula for M in (49) with P0;y the distribution
on C+[0;1) of the total local time process derived from the two BES3

fragments. By Remark 7 and Brownian scaling, each BES3 fragment has a
local time process on [0; y] which is a BESQ2 bridge from 0 to 0 of length
y. Summing the two independent BESQ2 bridges yields BESQ4 bridge. So
P0;y is the distribution described by De�nition 13 for x = 0. This proves the
formula forM in (49). The formula for N in (49) follows from the description
of N obtained similarly in [51] using the other Ray-Knight theorem (19):
N =

R1
0 Mxdx where under Mx the path is identically zero up to time x and

(Xx+u; u � 0) has distribution M . To obtain the expressions (50), consider
a process Z = (Z(u); u � 0) with strong L�evy-Itô (�) representation, for
� =M or N , and condition on the event on Z(1) = 0. 2

Remark 15 As in [51], the results of Proposition 14 have straightforward
extensions to the case with squares of Ornstein-Uhlenbeck processes instead
of squares of Bessel processes. The connection with local time processes and
excursions of BM with drift � is provided by Proposition 2. But details of
this case are left to the reader.

Circular L�evy-Itô representations. By development of Proposition 14
and its relation to local times of linear BM there is the following result for
circular BM. The discussion will be restricted to the case of zero drift. But
similar results for non-zero drift can be obtained using Remark 15.

Proposition 16 Under P0 the local time process
�
LT�, whose distribution is

determined by (7), admits a strong L�evy-Itô (
�
M) representation, with

�
M =

Z 1

0
dy
Z y

�1

�
P x;y

(y � x)2
dx = 2N0 +

Z 1

0
v�1e�vdv Q0

v!0 � Q̂0
v!0 (51)

where
�
P x;y is the image of Px;y after wrapping the pulse around the circle,

that is the probability distribution on C+[0; 1) of

(Xx;y(u) +Xx;y(u� 1); 0 � u < 1)

for Xx;y the random path in C+[�1; 1] de�ned in (48).
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Notation. For a random subset A of [0;1), let LA denote the process

Lx
A =

Z 1

t=0
1(t 2 A)dLx

t (x 2 [�1; 1] ) (52)

In particular, for a random interval, say A = [R;S], L[R;S] = LS �LR for LS

and LR as before, e.g. LS = L[0;S]. Put
�
L
u
A = Lu

a + Lu�1
a ; 0 � u � 1 and

�
LA = (

�
L
u
A; 0 � u � 1). For any random interval A, and also for various other

A's considered below which are countable unions of intervals, the processes

LA and
�
LA have continuous paths. Then LA and

�
LA will be regarded as

random paths in C+[�1; 1] and C+[0; 1) respectively.

Proof of Proposition 16. Due to the independence of
�
LT� and BT�

(Lemma 8 (v)), it su�ces to consider the process
�
LT� conditionally given

BT� = 1. Let Ty = infft : Bt > yg. As a consequence of Itô 's theory of
Brownian excursions, [22, 57, 56] conditionally given BT� = 1, the C+[�1; 1]
valued point process of local time pulses (L[Ty�;Ty]; 0 � y � 1) is an inho-
mogeneous Poisson marked point process with intensity measure dy �y(d�),
0 � y � 1; � 2 C+[�1; 1] where �y = R y

�1(y � x)�2Px;ydx. So given BT� = 1,
the C+[0; 1] valued point process

(
�
L[Ty�;Ty]; 0 � y � 1) (53)

is also inhomogeneous Poisson, with intensity measure the dy �y(d�) distri-
bution of (�u + �u�1; 0 � u � 1). This observation, and the decomposition
�
LT� =

P
0<y<1

�
L[Ty�;Ty] conditionally given BT� = 1, imply all the assertions

of the Proposition, apart from the second equality in (51). But this follows
easily from Lemma 8. (See the proof of Proposition 17 for some details.) 2
Decompositions of the Circular Local Time Process. Various decom-

positions of
�
LT�, can now be described by splitting the Poisson point process

of pulses (53) into independent components. As a preliminary, observe that
given BT� = 1, the C+[�1; 1] valued local time process LT� decomposes as
the sum of three independent components LT� = Lshort+ + Lshort� + Llong

obtained by classifying the pulses into the following three categories, where
y and x represent the levels of the maximum and minimum of the excursion
associated with a pulse:

short+ if 0 < x < y
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short� if y � 1 < x � 0 < y

long if x � y � 1

Thus a pulse (or its corresponding excursion) is called as short or long ac-
cording to whether the range y�x of the excursion is less than 1 or at least 1.
Each short pulse is further classi�ed as + if its support is entirely contained
in (0; 1), and � if its support intersects [�1; 0]. By wrapping around the

circle, there is a corresponding decomposition of
�
LT� into three independent

in�nitely divisible components

�
LT� =

�
Lshort+ +

�
Lshort� +

�
Llong (54)

which holds also without conditioning on BT� provided the de�nitions are
modi�ed appropriately given BT� = �1. Call a C[0; 1) valued process, or a
measure on C[0; 1), symmetric if it is cyclically stationary and reversible.

Proposition 17 The following statements hold under P0. In the decompo-

sition (54) of
�
LT�, the distribution of

�
Lshort+ is Q2

0!0 with L�evy measure
�
M short+ = 2N0. The distribution of

�
Lshort� +

�
Llong is

R1
0 e�`d`Q0

`!0 � Q̂0
`!0,

with L�evy measure

�
M � 2N0 =

Z 1

0
v�1e�vdv Q0

v!0 � Q̂0
v!0 (55)

Let
�
Lshort =

�
Lshort+ +

�
Lshort�. The decomposition

�
LT� =

�
Lshort +

�
Llong (56)

expresses
�
LT� as the sum of two independent processes, each of which is

in�nitely divisible and symmetric. The corresponding L�evy measures
�
M short

and
�
M long on C+[0; 1) are

�
M short =

Z 1

0
dy
Z y

y�1

�
P x;y

(y � x)2
dx;

�
M long =

Z 1

0
dy
Z y�1

�1

�
P x;y

(y � x)2
dx (57)

Each of the measures
�
M short,

�
M long, and

�
M is symmetric.
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Proof. These assertions follow directly from the preceding development.

The identi�cation
�
M short+ = 2N0 follows from (51) and (50), so the distri-

bution of
�
Lshort+ is Q2

0!0. Comparison with the last-exit decomposition in
Lemma 8, that is

�
LT� =

�
LG +

�
L[G;T�] (58)

where G is the time of the last zero of B before time T�, identi�es the

distribution of
�
Lshort�+

�
Llong, and yields its L�evy measure, due to the in�nite

divisibility of the family (Q0
`!0; ` � 0) and the well known formula v�1e�v for

the density at v of the L�evy measure of the standard exponential distribution
of L0

T�. (The identity (55) can also be derived using the relation between

BESQ0 and BESQ4 bridges described above (5.c) of [51]). The measure
�
M

is symmetric by the symmetry of
�
LT� and the L�evy -Khintchine formula (9).

Since
�
M long is the restriction of

�
M to a the symmetric subset finfuXu > 0g

of C+[0; 1], this measure too is symmetric, and so is
�
M short =

�
M � �

M long.

Again by the L�evy -Khintchine formula, the distributions of both
�
Lshort and�

Llong must be symmetric. 2
A path transformation. According to the above proposition and Lemma

8 (ii), the process
�
Lshort has the same distribution as

�
L[G;T�]. There is the

following pathwise explanation of this identity in distribution: givenBT� = 1,
if the short+ excursions are strung together to form a process by closing
up the gaps between these excursions, the resulting process has the same
distribution as (BG+v ; 0 � v � T� � G), as described in Remark 7. This
follows from the identical Poisson character of the two excursion processes.

The L�evy measure for the short excursions. The symmetry of
�
M short

is made obvious by the following variations of (57):

�
M short =

Z 1

0
dy�y(M̂0) =

Z 1

0
dy�y(M0)

where �y(K) denotes the image of the measure K on C+[0; 1] after a cyclic

shift by y, M̂0 =
R 0
�1

�
P x;0 x

�2dx is the time reversal of M0 in (50), and the

expression withM0 instead of M̂0 follows from the time reversibility of Q4
0!0.

The L�evy measure for the long excursions. From (57), the measure
�
M long on C+[0; 1] has total mass

R 1
0 dy

R y�1
�1 (y � x)�2dx = 1 � log 2. So the
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number of long excursions up to time T�, say #long, has Poisson distribution
with mean (1 � log 2). Given that #long = n, the local time pulses of these
excursions, when presented in a random order independent of the excursions,

form a sequence of n i.i.d random pulses with the distribution
�
M long=(1 �

log 2). (This is false if the randomized order is replaced by the natural time
ordering of excursions: before wrapping, a pulse of range r > 1 cannot occur
until the maximum process has reached at least r � 1, so bigger pulses will

tend to come later). To describe
�
M long more explicitly, let (Y;Z) be picked

at random from [0; 1]2 according to the probability density

P (Y 2 dy; Z 2 dz) =
1(z + y � 1)dzdy

(1 � log 2)(y + z)2

and let S4 have distribution Q4
0!0 independently of (Y;Z). Then, from (57),

the random pulse

(Y+Z)
�
S4

�
u+ Z

Y + Z

�
1(u < Y ) + S4

�
u+ Z � 1

Y + Z

�
1(u > 1� Z)

�
(0 � u � 1)

(59)

has distribution
�
M long=(1� log 2). According to Proposition 17, this process

is symmetric, something not at all obvious from the above construction.
Decomposition of the one-dimensional distributions. For x > 0 let
�short(x) and �long(x) denote the densities at x of the one-dimensional dis-

tributions of
�
M short and

�
M long respectively. Let �short(�) and �long(�) be

the corresponding Laplace transforms of
�
L
u
short and

�
L
u
long. Thus for every

0 � u � 1; � > 0

P0 exp(��
�
L
u
short) = �short(�) = exp

�
�
Z 1

0
(1� e��x)�short(x)dx

�
(60)

and similarly for long instead of short. The one-dimensional distribution of
�
L
u
T� is exponential with rate 1, with Laplace transform (1 + �)�1 and L�evy

density x�1e�x; x > 0, So the independent decomposition (56) gives

�short(�)�long(�) = (1 + �)�1 (� > 0) (61)

�short(x) + �long(x) = x�1e�x (x > 0) (62)
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Proposition 18

�short(x) =
1

2

Z 1

0
u�2 exp

 �x
2u(1 � u)

!
du = K1(x)e

�x (63)

where K1(x) is the modi�ed Bessel function,

�short(�) = exp

 1X
n=1

(n� 1)!(n+ 1)!

(2n + 1)!
(�2�)n

!
(64)

and there is the alternative expression (10) for �short(�).

Remark 19 The coe�cient of � in (64) shows that
�
L
u
short has mean 2=3.

Consequently from (54),
�
L
u
long has mean 1=3. Integration over u shows that

the mean total lengths of the short and long excursions are also 2=3 and 1=3
respectively. See (68) and (69) for the corresponding Laplace transforms.

Proof. By symmetry, it su�ces to consider u = 0. From (51), for any
non-negative function f vanishing at 0Z 1

0
f(x)�short(x)dx =

Z 1

0
dy
Z 1�y

0

�
P�z;y f(X0)(y + z)�2dz

where the
�
P�z;y distribution of X0 is gamma with shape parameter 2 and

rate (y + z)=(2y), so

�
P�z;y f(X0) =

Z 1

0
f(x)

 
y + z

2y

!2

x exp

 
�x(y + z)

2y

!
dx

The �rst equality in (63) follows easily. A change of variables yields

�short(x) = e�2x
Z 1

0
(t+ 1)t�

1
2 (t+ 2)�

1
2 e�txdt

Now the standard integral
R1
0 t�

1
2 (t+2)�

1
2 e�txdt = exK0(x) where K0 is the

usual modi�ed Bessel function (see e.g. Oberhettinger-Badii [47] page 18,
2.48, where the right side should be corrected as follows: eapK0(ap) should

be e
1
2apK0(

1
2ap)) allows the evaluation

�short(x) = e�2x
 
exK0(x)� d

dx
[exK0(x)]

!
= e�xK1(x)
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Formulae (64) and (10) are obtained by substituting the middle expression
in (63) into (60) and then switching the order of integration. 2
Decomposition of the Total Time. From (54) the time T� is the sum of
independent random times spent during various types of excursions, say T� =
Tshort++Tshort�+Tlong. As shown by Knight [31], the last-exit decomposition
(58) implies that the Laplace transform P0 exp(��T�) = (cosh �)�1, where
� =

p
2�, factors as

1

cosh(�)
=

 
�

sinh �

! 
tanh �

�

!
(65)

where the factors are the Laplace transforms of T��G and G, as restated in
the second equalities of (66) and (67) below. These equalities, and the second
equality in (68), also due to Knight [31], follow from Lemma 6, (29), (27),
(28) and (31). The remaining equalities in (66) - (70) follow immediately by
Proposition 17. Using the notation � =

p
2�, and writing simply P instead

of P0 governing B as a BM with no drift,

P exp(��Tshort+) = �

sinh �
= P exp(��(T� �G)) (66)

P exp(��(T� � Tshort+)) =
tanh �

�
= P exp(��G) (67)

P exp(��Tshort) = exp(1 � � coth �) = P exp(��GjL0
T� = 1) (68)

P exp(��Tlong) = exp(� coth � � 1)

cosh �
(69)

P exp(��Tshort�) = sinh �

�
exp(1� � coth �) (70)

Of these formulae, the most interesting are (69) and (70), which present
the Laplace transforms of two in�nitely divisible distributions on [0;1) that
do not seem to have been encountered before. The Laplace transform (69)
expands as

P exp(��Tlong) = 1� 1

3
� +

3

10
�2 � 1409

5670
�3 + � � � (71)

con�rming the result of Remark 19 that the mean of Tlong is 1=3. In fact,
each of the random variables Tshort+; Tshort� and Tlong has the same mean
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1=3. Both Tshort+ and Tshort� are strictly positive random variables with
continuous distributions on (0;1). However Tlong has a compound Poisson
distribution that has a continuous component on (0;1) and an atom at 0
whose size may be found from (69):

P (Tlong = 0) = lim
�!1P exp(��Tlong) = 2

e
(72)

As a check, from the discussion above (59), Tlong is distributed as the sum
of #long i.i.d. r.v's with continuous distribution on (0;1), where #long is
Poisson with mean 1 � log 2. So P (Tlong = 0) = exp(log 2 � 1) = 2=e. The
common distribution of the terms in this sum have density �(x)=(1 � log 2)
where (68) yields

Z 1

0
x�(x)e��xdx =

�
1

sinh �

�2
� 1

� sinh � cosh �
(73)

5 Results for Other Random Times

The Laplace functional of
�
LT for many random times T besides T� can be

obtained by variations of the method of Section 3. Throughout this section,
let P = P0 govern B as a BM with zero drift. Extensions to P� for � 6= 0 are
straightforward, as in Section 3.

A class T of random times T such that
�
BT = 0 will now be de�ned. This

class T includes T�, the inverse local time of B at zero �` = infft : L0
t > `g,

and the inverse local time of
�
B at zero

�
� `= infft : �L0

t > `g.
De�nition 20 Let T be the collection of random times T of the form either

T =
�
�R or T =

�
�R� where R is a positive measurable measurable function of

the time-changed process (B�
� `
; ` � 0).

The process (B�
�`
; ` � 0) is a continuous time symmetric random walk on

the integers, with i.i.d. exponential(1) holds independent of i.i.d. Bernoulli(1/2)

jumps of �1. Note that if T 2 T then
�
BT = 0 and

�
L
0
T = R. Let NT be the

number of loops (of either sign) completed by
�
B up to time T . That is to

say NT is the number of jumps of (B�
� `
; 0 � ` � �

L
0
T ), where a jump if any at
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local time
�
L
0
T = R is counted if T =

�
�R but not if T =

�
�R�. The following

proposition generalizes Lemma 8 and the similar decomposition of
�
L�
�`
given

in Leuridan [40]. See also [50] where this proposition is generalized to Brow-
nian motion on a network. Recall that � denotes convolution of distributions
on C[0; 1).

Proposition 21 For T 2 T the conditional distribution of
�
LT given NT = n

and
�
L
0
T = ` is Q0

`!0 � Q̂0
`!0 �Q2n

0!0. That is to say, the distribution of
�
LT isZ 1

0

1X
n=0

P (NT = n;
�
L
0
T 2 d`)Q0

`!0 � Q̂0
`!0 �Q2n

0!0 (74)

Proof. Following the style of argument in Section 5 of [51], decompose
�
LT as

the sum of pulses derived from individual excursions
�
� of

�
B away from 0. Call

�
� a loop if

�
� returns to 0 on the opposite side from which it starts. Otherwise

call
�
� a non-loop. According to Itô's [22] excursion theory, when the pulses

are viewed as a C+[0; 1) valued point process parameterized by local time

of
�
B at 0, the pulses of loops and the pulses of non-loops form independent

Poisson processes. The point process of pulses of loops is de�ned by the
sequence of i.i.d. exponential spacings between loops on the local time scale,
and the i.i.d. sequence of C+[0; 1] valued pulses. By Lemma 8 the pulse
of each loop has distribution Q2

0!0, independently of the signs of all the
loops. The distribution of the sum of n such pulses is therefore Q2n

0!0 by the
additivity of squares of Bessel bridges. Similarly, if non-loops are classi�ed in
the obvious way as either positive or negative, for each �xed ` the local time

process
�
L�
� `

contains a contribution from pulses of positive non-loops with

distribution Q0
`!0, and an independent contribution from pulses of negative

non-loops with distribution Q̂0
`!0. By de�nition, T 2 T has the property

that (NT ;
�
L
0
T ) is a measurable function of (B�

�`
; ` � 0), that is a function of

the i.i.d exponential spacings between loops on the local time scale and the

i.i.d. sequence of signs of the loops. So (NT ;
�
L
0
T ) is independent of both the

i.i.d. sequence of pulses of the loops, and of the Poisson point process of

pulses of non-loops. Since
�
BT = 0 the process

�
LT decomposes as the sum

of pulses from NT loops, and the sum of pulses of the non-loops up to local

time
�
L
0
T and the conclusion follows. 2
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Corollary 22 For T 2 T ,

P exp(�m �
LT ) =

Z 1

0

1X
n=0

P (NT = n;
�
L
0
T 2 d`)	�n exp(�`( �	 � 1)) (75)

for
�
	 and 	 as in (33) and (30).

Proof. Apply the previous proposition and (29).

Example 23 Leuridan [40] obtained (74) for
�
� `= infft : �

L
0
t > `g. Then

�
L
0
�
� `
= ` and N�

�`
has Poisson distribution with mean `. So (75) yields

P exp(�m �
L�
�`
) = exp

�
�`( �	 � 1)=	

�
(76)

The calculation of features of the one- and two-dimensional distributions of�
L�
� `
, as undertaken in [40], is simpli�ed by application of this formula.

Corollary 24 Let T(0) = 0 and let T(1); T(2); � � � be the successive times that
�
B returns to 0 after complete loops around the circle. Let Sn = BT(n), so
(S0; S1; � � �) is the usual embedding of a symmetric random walk in Brownian
motion. Let N be a non-negative integer valued r.v. which is conditionally
independent of (Bt; t � 0) given (S1; S2; � � �). Let

G(z) =
X
n

P (N = n)zn

Then the circular local time process
�
LT(N)

is cyclically stationary, with

P exp(�m �
LT(N)

) = G(1=
�
	)

Proof. By the strong Markov property of
�
B, the sequence of circular local

time processes (
�
LT(n)

� �
LT(n�1); n = 1; 2; � � �) is a sequence of i.i.d. copies of

�
LT(1)

� �
LT(0)

=
�
LT�. By Lemma 8, this i.i.d. sequence is independent of

the i.i.d. sequence of signs of the successive loops of
�
B that determine the

random walk (Sn). Corollary 24 now follows from (35). 2
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To illustrate, Corollary 24 shows that P exp
�
�
�
L
u
T(N)

�
= G(1=(1+�)) for

0 � u < 1, and with (36) gives the Laplace transform of the time spent by
�
B

in an interval of length p up to time T(N). If the distribution of N is in�nitely

divisible, then so is the distribution of
�
LT(N)

, by a standard subordination

argument. The following example shows that the distribution
�
LT(N)

may be

in�nitely divisible even if that of N is not:

Example 25 Let Ta be the �rst time Bt hits a. Then T1 = T(N) where N is

the hitting time of 1 for the walk, with G(z) = z�1(1�p
1� z2). So

P exp(�m �
LT1

) =
�
	

 
1�

r
1 � (

�
	)�2

!
(77)

For example

P exp(�
�
L
u
T1
) = 1 + ��

p
2�+ �2 (0 � u < 1) (78)

For u = 0,
�
L
0
T1
= inff` : B�

� `
= 1g is the hitting time of 1 by a continuous time

symmetric random walk on the integers. Formula (78) then agrees with the
standard expression ([15], formula (3.10)) for the Laplace transform of this

hitting time. The fact that the distribution of
�
LT1

is cyclically stationary
can be seen directly as follows. For 0 < a < 1 the distribution of B is
preserved by the path transformation which exchanges the segments of path

of
�
B on [0; Ta] and [Ta; T1]. This remark, combined with the observation that

�
LT1

is the sum of N i.i.d. copies of of
�
LT�, yields an elementary proof of

the cyclic stationarity of
�
LT�. In this example, the possible values of N are

f1; 3; 5; � � �g, so the distribution of N is not in�nitely divisible. However, by
consideration of excursions below the maximum, much as in Section 4, it is

clear that the distribution of
�
LT1

is in�nitely divisible, with L�evy measure �
on C+[0; 1) that may be obtained as follows from M on C[0;1) as in (49):

� = 2
R 1
0

�
Mudu where

�
Mu is image of

�
M0 after a cyclic shift by u, and

�
M0

is the M distribution of (
P1

n=0Xn+v; 0 � v < 1). The identity obtained by
inserting this description of � and (77) into the L�evy -Khintchine formula
(9) seems quite non-trivial.
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The Cover Time. Let Tcover be the cover time for the circular Brownian

motion, that is the inf of times t such that the range of (
�
Bs; 0 � s � t) equals

[0; 1). Put another way, Tcover = infft : Rt = 1g where Rt = max0�s�tBs �
min0�s�tBs. It is known that

P (BTcover 2 dx) = jxjdx (�1 � x � 1) (79)

which implies
�
BTcover has uniform distribution on [0; 1). Let ~T be the �rst

time that
�
B reaches the point

�
BTcover. There is the followingWilliams decom-

position at time ~T which is a variation of results of Imhof [20, 21] and Vallois
[62, 63]: Conditionally given BTcover = x > 0, the processes (x�Bt; 0 � t � ~T )
and (B ~T+s; 0 � s � Tcover � ~T ) are independent, the �rst a BES3

1�x run till
its hitting time of 1, and the second a BES3

0 run till its hitting time of 1.
This decomposition and Remark 7 yield a formula for the Laplace functional

of
�
LTcover

:

P exp(�m �
LTcover) =

Z 1

0

x	(xm0x) + �x	(�xmx1)

	2(mx)
dx (80)

where 	 is de�ned by (29), �x = 1 � x, and for a measure m on [0; 1) and
x 2 [0; 1) the measures mx;m0x and mx1 on [0; 1) are de�ned as follows:

mx is the image of m via the map u! u� x mod 1 ;
m0x is the image of the restriction of m to [0; x) via the map u! u=x;
mx1 is the image of the restriction of m to [x; 1) via u! (u� x)=(1� x)

In particular, given BTcover = x > 0 the local time
�
L
0
Tcover = L0

Tcover

decomposes as the sum of two i.i.d. exponentials with rates (2x�x)�1, and
(80) yields

P exp(�� �
L
0
Tcover) =

Z 1

0

dx

(1 + 2�x�x)2
=

1

2 + �
+
2arctanh

q
�

2+�p
�(2 + �)3=2

(81)

A similar but more complicated expression can be obtained from (80) for

the Laplace transform of
�
L
u
Tcover

for all 0 < u < 1. The transform (81)

can be explicitly inverted by noting that P (
�
L
0
Tcover � `) = P (X` + Y` � 1)

where X` = max0�s��` Bs and Y` = min0�s��` Bs, and �` is the inverse local
time process of B at zero. It is well known that X` and Y` are i.i.d. with
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P (X` � x) = exp(�`=2x), and the convolution integral can be evaluated
using formulae around (63) to give

P (
�
L
0
Tcover � `) = `K1(`)e

�` (82)

where K1 is the modi�ed Bessel function. The inequality L0
Tcover � L0

T� and
the exponential distribution of L0

T� imply `K1(`) � 1, as is easily veri�ed an-
alytically. As another example, taking m = �� in (80) for Lebesgue measure

� on [0; 1) recovers the formula P exp(��Tcover) = sech2(
q
�=2) obtained in

[20].

Let U =
�
BTcover

. Note that U is the a.s. unique zero of the process
�
LTcover

.
From the Williams decomposition and Remark 7, U has uniform distribution
on [0; 1), and independently of U

the process (
�
L
U+s
Tcover �

�
L
U+s
~T

; 0 � s < 1) has distribution Q2
0!0 (83)

where U + s is understood mod 1. So the process
�
LTcover �

�
L ~T is stationary,

with Laplace functional

P exp[�m(
�
LTcover �

�
L ~T

)] =
Z 1

0

dx

	(mx)
(84)

But neither the processes
�
LTcover

and
�
L ~T is stationary, due to (85) below.

The �rst zero after the cover time. Let T be a stopping time of B, and
0 � c <1. An argument using Dynkin's formula shows that

P
�
L
u
T = c for all 0 � u < 1 if and only if PT = c and

�
BT = 0 a.s. (85)

And it is easily seen that if T > 0 and
�
LT is stationary then T � Tcover a.s..

See [14] for related results. Let T� be the time of the �rst return of
�
B to 0

after time Tcover. Combining the above observations shows that

if T > 0 and PT <1 and
�
LT is stationary, then a.s. BT = 0 and T � T�

(86)
So the following question arises:

Question 26 Is the process
�
LT� stationary?
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The Williams decomposition used to obtain (80) yields the following expres-

sion for the Laplace functional of
�
LT�:

P exp(�m �
LT�) =

1

	(m)

Z 1

0

 
x	(xm0x) + �x	(�xmx1)

	(mx)

!2

dx (87)

So the question is whether this expression is invariant under cyclic shifts of
m. Consider the following two special cases:

(i) m is concentrated on at most two points.
(ii) m is a multiple of uniform distribution on a subinterval of the circle.

Formula (87) in case (i) gives the joint Laplace transform of
�
L
u
T� and

�
L
v
T�

for arbitrary u and v in [0; 1), and in case (ii) gives the Laplace transform
of the occupation time of a subinterval of the circle up to time T�. In both
cases it is possible to simplify the right side of (87) by calculus. In separate
calculations for the two cases using Mathematica, some remarkable simpli�-
cations occur. It is found that in both these cases the Laplace functional can
be expressed as follows:

P exp(�m �
LT�) =

�

1 + �

 
1 +

�p
1� �2

arctanh
p
1 � �2

!
(88)

where � = �(m) = P exp(�m �
LT�) = 1=

�
	(m) as in (33), and

arctanh(x) = x+
1

3
x3 +

1

5
x5 + � � � (x2 < 1)

so the right side of (88), call it ��, expands as

�� = �+ (1 ��)�2
�
1

3
+
1

5
(1 � �2) +

1

7
(1� �2)2 + � � �

�
(89)

Because �(m) is invariant under cyclic shifts of m, so is ��(m). So (88)

in case (i) shows that the two-dimensional distributions of
�
LT� are invariant

under cyclic shifts, and in case (ii) that the distribution of the occupation
time of a sub-interval of the circle up to time T� depends only on the length

of the interval. Note that for m a point mass at 0,
�
L
0
T� =

�
L
0
Tcover = L0

Tcover,

and (88) then reduces to (81). So for every u 2 [0; 1) the distribution of
�
L
u
T�

is identical to the distribution of
�
L
0
Tcover

described by formula (82).
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Using (88) for two-point distributions, it can be checked for arbitrary m
that the two sides of (88) with �m instead of m, viewed as power series in �,

have the same coe�cients of 1, � and �2, namely 1, �P (m �
LT�) = �(2=3) �

m1,
and

1

2
P ((m

�
LT�)

2) =
2

5

�
m

2

1 �
4

3

�
m2 (90)

where the
�
mn are de�ned by (34). So there is much evidence for the following

conjecture, which would imply an a�rmative answer to question (26):

Conjecture 27 Formula (88) holds for all �nite measures m on [0; 1).

In connection with this conjecture, it turns out that for m a point mass or
Lebesgue measure, the expression �p

1��2 arctanh
p
1 � �2 appearing in (88)

is identical to the Laplace functional in (84). While it should be easier to
resolve whether or not this identity extends to all measures m, the relation
between this coincidence and (88) is not clear.

6 Further applications of the series formulae

for Bessel processes

This section points out a number of applications of Proposition 5 to one-
dimensional di�usion processes. See [53] for further details and developments.
Assumption. Throughout this section suppose as in (14) that the measure
m on [0;1) has �nite total mass and �nite �rst moment.

Corollary 28 Let min be as in (16). The functions 	0(�m) and 	1(�m)
are entire functions of � de�ned by the power series

	i(�m) = i+
1X
n=1

min(2�)
n (i = 0 or 1) (91)

Consequently, (11), (18) and (22) hold for all � > ��m for some �m > 0.

Thus (11), (18), (22) and other such formulae for Laplace transforms involv-
ing the 	i yield moment generating functions, from which moments can be
read by formal manipulation of power series. For example:
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Corollary 29 All positive integer moments of the Qd
x distribution of

R1
0 Xum(du)

are �nite, and given by polynomials in x; d and the min obtained from by for-
mal power series manipulations on (11) with 	i(�m) instead of 	i.

There is an alternative expression for the Laplace transform in (22) which
is well known (see e.g. Itô-McKean [23], 6.1-6.2, Knight [33], Kotani-Watanabe
[35], Sec. 4). Let Am(t) =

R1
0 Lu

tm(du). Then

P0 exp(��Am(�`)) = exp

 �`
gm(�; 0; 0)

!
(92)

where gm(�; x; y) is the Green function of the quasi-di�usion Xm de�ned by
Xm(u) = B(Tm;u) where (Tm;u; u � 0) is the right-continuous inverse of the
additive functional (Am(t); t � 0) of B. As shown in [33, 35], the function
� ! gm(�; 0; 0) is the function known in Krein's theory of vibrating strings
[36, 37, 25, 35] as the characteristic function of the mass distribution 2m, for
which many di�erent expressions are known. Combining (22) and (92) yields
a particularly simple one that does not seem to appear in the literature:

Corollary 30

gm(�; 0; 0) =
	1(�m)

2	0(�m)
(93)

where the 	i(�m) are the entire functions de�ned by the series (91).

According to a remarkable result of Krein, the mass distribution 2m can be
recovered its characteristic function. As a consequence:

Corollary 31 The measure m can be recovered from the two positive se-
quences (m01;m11; � � �) and (m11;m21; � � �) de�ned by (16).

By considering variations of the functions 	i like 	 in (30) with an arbi-
trary endpoint x instead of 1, both the increasing and decreasing solutions
of the Sturm-Liouville equation 1

2�
00 = �m � �, hence the Green function

gm(�; x; y), can be expressed by explicit series formulae involving iterated
integrals with respect to m (c.f. [9] Section 5.4, [25] Sec 2.3). Such formulae
have numerous applications to the computation of quantities of probabilistic
interest, by classical applications of the Green function [23]. To illustrate,
assume now for simplicity that mf0g = 0. Di�erentiation of the exponent in
(92) yields:
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Corollary 32 The L�evy measure �m of the subordinator (Am(�`); ` � 0),
which is the inverse of the local time of process of X at zero, is given by

Z 1

0
y�m(dy)e

��y = � d

d�

	0(�m)

2	1(�m)
(94)

Consequently, all moments of �m are �nite, and these moments are polyno-
mials in (m01;m11; � � �) and (m11;m21; � � �) with rational coe�cients obtained
from (91) and (94) by formal power series manipulations.

In connection with formula (94), by combination of standard renewal theory
[15] and the theory of excursions for the stationary version of the quasi-
di�usion Xm, for which see [49], the measure

Fm(dy) = (
R1
0 x�(dx))�1y�(dy)

has the following probabilistic interpretation. Let Gm;u be the last zero of
Xm before time u and Dm;u the �rst zero of Xm after time u. Then Fm is
the limiting distribution of Dm;u �Gm;u as u!1.

For some recent applications of Krein's theory of strings to probabilistic
problems, and references to earlier work, see [4, 7, 39, 38].

7 Open Problems

1. See Question 26 and Conjecture 27.

2. Provide some criteria for when expressions like (7) and the inverse of
(17) for i = 1 generate multivariate Laplace transforms. The struc-
ture of the expression with the sum over subsets gives consistency of
corresponding f.d.d.'s if they exist. So this is a natural way to gener-
ate processes with exponential marginals. The question is what sort of

function of A is an acceptable substitute for the product
�
�(A) in (7)

or �1(A) in (17)? See e.g. [55] for background on related questions.
What about other parameter sets besides the line or a circle? If there
are more such processes, are they continuous? in�nitely divisible?

3. For
�
Q

�
� as in Corollary 3, �nd the distribution of max0�u<1Xu and/or

min0�u<1Xu. It is easy to see that argmax0�u<1Xu is
�
Q

�
� a.s. unique
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for all � � 0; � > 0, hence uniformly distributed on [0; 1) by cyclic
stationarity. From the local time representation for � = 1 it is clear

that
�
Q

�
� (min0�u�1Xu > 0) = 1 for � � 1, and then argmin0�u<1Xu

will be
�
Q

�
� a.s. unique and uniform on [0; 1). But for 0 < � < 1 the

L�evy -Itô representation and the recurrence of state 0 for BESd
0 with

d < 2 imply that
�
Q

�
� (min0�u�1Xu = 0) is strictly between 0 and 1,

and given this event X will have lots of zeros. A �nite dimensional
integral for the probability of this event can be given using results of
Section 4 and excursion theory. See Eisenbaum [11] regarding related
questions for linear Brownian local times and references to earlier work
of Borodin and others on this topic.

4. It is known that squares of Bessel processes arise as the total mass pro-
cess of measure-valued branching process. Le Gall [17] established deep
connections between such superprocesses and the theory of Brownian
excursions. Is there a superprocess analog of Proposition 5? If so, how
does it relate to Dynkin's [10] formulae for moments of the random
�eld generated by a superprocess?
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