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Abstract

Aldous and Pitman (1994) studied asymptotic distributions as
n!1, of various functionals of a uniform random mapping of the set
f1; : : : ; ng, by constructing amapping-walk and showing these random
walks converge weakly to a re
ecting Brownian bridge. Two di�erent
ways to encode a mapping as a walk lead to two di�erent decomposi-
tions of the Brownian bridge, each de�ned by cutting the path of the
bridge at an increasing sequence of recursively de�ned random times
in the zero set of the bridge. The random mapping asymptotics en-
tail some remarkable identities involving the random occupation mea-
sures of the bridge fragments de�ned by these decompositions. We
derive various extensions of these identities for Brownian and Bessel
bridges, and characterize the distributions of various path fragments

�Research supported in part by N.S.F. Grants DMS-9970901 and DMS-0071448

1



involved, using the L�evy-Itô theory of Poisson processes of excursions
for a self-similar Markov process whose zero set is the range of a stable
subordinator of index � 2 (0; 1).

Keywords Brownian bridge, Brownian excursion, local time, occupation
measure, stable subordinator, self-similar Markov process, Bessel process,
path decomposition, Poisson-Dirichlet distribution, pseudo-bridge, random
mapping, size-biased sampling, weak convergence, exchangeable interval par-
tition.
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1 Introduction

In a previous paper [2] we showed how features of a uniformly distributed
random mapping Mn, from [n] := f1; 2; : : : ; ng to itself, could be encoded as
functionals of a particular non-Markovian random walk on the non-negative
integers. This mapping-walk, suitably rescaled, converges weakly in C[0; 1]
as n ! 1 to the distribution of the re
ecting Brownian bridge de�ned by
the absolute value of a standard Brownian bridge Bbr with Bbr

0 = Bbr
1 = 0

obtained by conditioning a standard Brownian motion B on B1 = 0. Two
important features of a mapping are the vector of sizes of connected compo-
nents of its digraph, and the vector of sizes of cycles in its digraph. Results
of [2] imply that for a uniform random mapping, as n ! 1, the compo-
nent sizes rescaled by n, jointly with corresponding cycle sizes rescaled byp
n, converge in distribution to a limiting bivariate sequence of random vari-

ables (�Ij ; L
0
Ij
)j=1;2;::: where (Ij)j=1;2;::: is a random interval partition of [0; 1],

with �Ij the length of Ij and L0
Ij

the increment of local time of Bbr at 0
over the interval Ij. With the convention for ordering connected compo-
nents of the mapping digraph used in [2], the limiting interval partition is
(Ij) = (IDj ), according to the following de�nition. Here, and throughout
the paper, U;U1; U2; : : : denotes a sequence of independent uniform (0; 1)
variables, independent of Bbr.

De�nition 1 (The D-partition [2]) Let IDj := [DVj�1;DVj ] where V0 =
DV0 = 0 and Vj is de�ned inductively along with the DVj for j � 1 as follows:
given that DVi and Vi have been de�ned for 0 � i < j, let

Vj := DVj�1 + Uj(1�DVj�1);

so Vj is uniform on [DVj�1 ; 1] given B
br and (Vi;DVi) for 0 � i < j, and let

DVj := infft � Vj : B
br
t = 0g:

On the other hand, a variation of the main result of [2] shows that with
a di�erent ordering convention, the mapping component sizes rescaled by
n, jointly with their cycle sizes rescaled by

p
n, have a limit distribution

speci�ed by the sequence of lengths and Brownian local times (�Ij ; L
0
Ij
)j=1;2;:::

a di�erently de�ned limiting interval partition. This is the partition (Ij) =
(ITj ) de�ned as follows using the local time process (L0

u; 0 � u � 1) of Bbr at
0:
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De�nition 2 (The T -partition) Let ITj := [Tj�1; Tj] where T0 := 0, V̂0 :=
0, and for j � 1

V̂j := 1�Qj
i=1(1� Ui); (1)

so V̂j is uniform on [V̂j�1; 1] given Bbr and (V̂i; Ti) for 0 � i < j, and

Tj := inffu : L0
u=LB1 > V̂jg:

For each of these two random interval partitions (Ij) we are interested in the
distribution of the bivariate sequence of lengths and local times (�Ij ; L

0
Ij
)j=1;2;:::

and the distribution of the associated path fragments Bbr[Ij] and standard-
ized fragments Bbr

� [Ij]. Here for a process X := (Xt; t 2 J) parameter-
ized by an interval J , and I = [GI ;DI ] a subinterval of J with length
�I := DI � GI > 0, we denote by X[I] or X[GI ;DI ] the fragment of X
on I, that is the process

X[I]u := XGI+u (0 � u � �I): (2)

We denote by X�[I] or X�[GI ;DI ] the standardized fragment of X on I,
de�ned by the Brownian scaling operation

X�[I]u :=
X[I]u�Ip

�I
:=

XGI+u�Ip
�I

( 0 � u � 1): (3)

Figure 1 illustrates these de�nitions for a typical path of X = Bbr. Note
that the �rst interval ID1 of the D-partition ends at the time DU1 of the
�rst zero of Bbr after a uniform(0; 1)-distributed time U1, whereas the �rst
interval IT1 of the T -partition ends at the time T1 when the local time of Bbr

at 0 has reached a uniform(0; 1)-distributed fraction of its ultimate value.
As illustrated in Figure 1, the associated fragments of Bbr are qualitatively
di�erent: Bbr

� [I
D
1 ] ends with an excursion while Bbr

� [I
T
1 ] does not.
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Despite this di�erence between the fragments of Bbr over the D- and
T -partitions, the random mapping asymptotics have the following corollary.
Let (ID(j)) and (IT(j)) denote the length-ranked D-partition and the length-

ranked T -partition respectively, meaning ID(j) is the jth longest interval in

the D-partition, and IT(j) is the jth longest interval in the T -partition.

Corollary 3 Considering the four bivariate sequences (�Ij ; L
0
Ij
)j=1;2;::: of lengths

and bridge local times at 0, for (Ij) one of the four random interval partitions
of [0; 1] de�ned by (IDj ), (I

D
(j)), (I

T
j ) or (I

T
(j)),

(i) the bivariate sequence has the same distribution for (ID(j)) as for (I
T
(j));

(ii) the bivariate sequence for (IDj ) is the bivariate sequence for (ID(j)) in a
length-biased order;
(iii) the bivariate sequence for (ITj ) is the bivariate sequence for (IT(j)) in an

L0-biased order;
(iv) the sequence of local times (L0Ij) has the same distribution for (IDj ) as
for (ITj ), whereas the sequence of lengths (�Ij ) does not.

See [25, 26] for background about size-biased random orderings. To il-
lustrate the meaning of (iii) for instance, for each k � 1, conditionally given
the entire bivariate sequence (�IT(j) ; L

0
IT(j)

)j=1;2;:::), the probability of the event

(IT1 = IT(k)) is L0
IT
(k)
=L0

1, where L0
1 =

P
j L

0
IT
(j)

almost surely. And given

also (IT1 = IT(k)), for each m � 1 with m 6= k the probability of the event

(IT2 = IT(m)) is L
0
IT
(m)
=(L0

1 � L0
IT1
) and so on. Put another way, parts (i)-(iii) of

the corollary state that the bivariate sequence (�Ij ; L
0
Ij
)j=1;2;::: for (Ij) = (IDj )

is distributed like a length-biased rearrangement of the bivariate sequence for
(Ij) = (ITj ), which is in turn distributed like an L0-biased rearrangement of
the bivariate sequence for (Ij) = (IDj ). Consequently, the distribution of any
one of the four bivariate sequences determines the distribution of each of the
others.

The rest of this paper is organized as follows. Section 2 explains how we
discovered Corollary 3 by consideration of random mapping asymptotics. We
recall the theorem from [2] which describes the asymptotics of mapping-walks
in terms of the fragments of Bbr de�ned by the D-partition, and present the
companion result, for a di�erent orderings of components, where the limit
involves the fragments of Bbr de�ned by the T -partition. Section 3 lays out
our results regarding the decomposition of Bbr into path fragments associ-
ated with the D- and T -partitions, in a way which does not depend the
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random mapping asymptotics. In particular, we describe the three di�erent
distributions of bivariate sequences featuring in the three parts of Corol-
lary 3. We formulate and prove these results more generally, for Bbr the
standardized bridge of a recurrent self-similar Markov process B whose in-
verse local time process at 0 is a stable subordinator of index � for some
� 2 (0; 1). So � = 1

2
for B a standard Brownian motion as supposed in

previous paragraphs, and � = 1 � �=2 for B a Bessel process of dimension
� 2 (0; 2). Some of the results in Section 3, like Corollary 3, can be viewed
in the Brownian case as asymptotic counterparts (under weak convergence
of mapping-walks) of some combinatorial symmetries of random mappings,
discussed in Section 2.2. Other results in the Brownian case, especially those
involving the method of Poissonization by random scaling [34, 35], are not
obvious from the combinatorial perspective, but provide explicit limit distri-
butions for functionals of uniform random mappings. See also [4] where we
apply this method to characterize the asymptotic distribution of the diameter
of the digraph of a uniform mapping. Sections 4 and 5 provide some proofs
and further details of the main results in Section 3, while Section 6 contains
various complements. In particular, we show in Section 6.2 that Corollary
3 holds even more generally for interval partitions (IDj ) and (ITj ) de�ned as
before, but with the random zero set of Bbr replaced by the complement of
[jIexj , where Iexj is any exchangeable random partition of [0; 1] into an in�nite
number of intervals, and (L0

u; 0 � u � 1) is the associated local time process,
as de�ned by Kallenberg [16]. This is the limiting case of a corresponding
result for a �nite exchangeable interval partition of [0; 1], which we prove by
a combinatorial argument.

In companion papers [3] and [1] we show that Brownian bridge asymp-
totics apply for models of random mappings more general than the uniform
model, in particular for the p-mapping model [24, 29], and that proofs can be
simpli�ed by use of Joyal's bijection between mappings and trees. See also
[30] for a recent review of the applications of Brownian motion and Poisson
processes to the asymptotics of various kinds of large combinatorial objects,
including partitions, trees, graphs, permutations, and mappings.

2 Random Mappings

In this section we explain how study of random mappings led us to con-
sideration of the two interval partitions of Brownian bridge, and show how
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the distributions of path fragments of the bridge de�ned by these partitions
encode various asymptotic distributions for mappings.

2.1 Mapping-walks and the two orderings

A mapping Mn : [n] ! [n] can be identi�ed with its digraph of edges
f(i;Mn(i)); i 2 [n]g. The connection between random mappings and Brow-
nian bridge developed in [2] can be summarized as follows.

� A mapping digraph can be decomposed as a collection of rooted trees
together with extra structure (cycles, basins of attraction).

� A rooted tree can be coded as a discrete tree-walk, a walk excursion
starting and ending at 0.

� Given some ordering of tree-components, one can concatenate walk-
excursions to de�ne a discrete mapping-walk which codes Mn.

� For a uniform randommapping, the induced distribution on tree-components
is such that the tree-walks, suitably normalized, converge to Brownian
excursion as the tree size increases to in�nity.

� So for a uniform random mapping, we expect the mapping-walks, suit-
ably normalized, to converge to a limit process de�ned by some con-
catenation of Brownian excursions.

� With appropriate choice of ordering, the limit process is in fact re
ect-
ing Brownian bridge.

We now amplify this summary, emphasizing the only subtle issue { the
choice of ordering. Fix a mapping Mn. It has a set of cyclic points

Cn := fi 2 [n] :Mk
n (i) = i for some k � 1g;

where Mk
n is the kth iterate of Mn. Let Tn;c be the set of vertices of the

(perhaps trivial) tree component of the digraph with root c 2 Cn. The tree
components are bundled by the disjoint cycles Cn;j � Cn to form the basins
of attraction (connected components) of the mapping digraph, say

Bn;j :=
[

c2Cn;j

Tn;c � Cn;j with
[
j

Bn;j = [n] and
[
j

Cn;j = Cn (4)
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where all three unions are disjoint unions, and the Bn;j and Cn;j are indexed
in some way by j = 1; : : : ;Kn say. The construction in [2] encodes the
restriction of the digraph of Mn to each tree component Tn;c of size k by 2k
steps of a tree-walk with increments �1 on the non-negative integers. The
tree-walk proceeds by a suitable search of the set Tn;c, making an excursion
which starts at 0 and returns to 0 for the �rst time after 2k steps, after
reaching a maximum level 1 + hn(c), where hn(c) is the maximal height
above c of all vertices of the tree Tn;c with root c, that is

hn(c) = maxfh : 9i 2 [n] with Mh
n (i) = c and M j

n(i) =2 Cn for 0 � j < hg:
(5)

It was shown in [5] that as k ! 1, the distribution of the tree-walk for a
k-vertex random tree, of the kind contained in the digraph of the uniform
random mapping Mn for k � n, when scaled to have 2k steps of �1=

p
k per

unit time, converges to the distribution 2Bex for Bex a standard Brownian
excursion. Subsequent work [22] shows that the same result holds for a variety
of codings of trees as walks. Consequently, any of these codings would serve
our purpose in the following de�nitions.

We now de�ne a mapping-walk (to codeMn) as a concatenation of its tree-
walks, to make a walk of 2n steps starting and ending at 0 with exactly jCnj
returns to 0, one for each tree component of the mapping digraph. To retain
useful information about Mn in the mapping-walk, we want the de�nition of
the walk to respect the cycle and basin structure of the mapping. Here are
two orderings that do so.

De�nition 4 (Cycles-�rst ordering) Fix a mapping Mn from [n] to [n].
If Mn has Kn cycles, �rst put the cycles in increasing order of their least
elements, say cn;1 < cn;2 < : : : < cn;Kn. Let Cn;j be the cycle containing cn;j,
and let Bn;j be the basin containing Cn;j . Within cycles, list the trees around
the cycles, as follows. If the action of Mn takes cn;j ! cn;j;1 ! � � � ! cn;j for
each 1 � j � Kn, the tree components Tn;c are listed with c in the order

(

Cn;1z }| {
cn;1;1; : : : ; cn;1;

Cn;2z }| {
cn;2;1; : : : ; cn;2; : : : : : : ;

Cn;Knz }| {
cn;Kn;1; : : : ; cn;Kn): (6)

The cycles-�rst mapping-walk is obtained by concatenating the tree walks
derived from Mn in this order. The cycles-�rst search of [n] is the permuta-
tion � : [n] ! [n] where �j is the jth vertex of the digraph of Mn which is
visited in the corresponding concatenation of tree searches.
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De�nition 5 (Basins-�rst ordering)[2] IfMn has Kn cycles, �rst put the
basins Bn;j in increasing order of their least elements, say 1 = bn;1 < bn;2 <
: : : bn;Kn; let cn;j 2 Cn;j be the cyclic point at the root of the tree component
containing bn;j. Now list the trees around the cycles, just as in (6), but for
the newly de�ned cn;j and cn;j;i. Call the corresponding mapping-walk and
search of [n] the basins-�rst mapping-walk and basins-�rst search.

Be aware that the meaning of Bn;j and Cn;j now depends on the ordering
convention. Rather than introduce two separate notations for the two order-
ings, we use the same notation for both, and indicate nearby which ordering
is meant. Whichever ordering, the de�nitions of Bn;j and Cn;j are always
linked by Bn;j � Cn;j , and (4) holds.

Let us brie
y observe some similarities between the two mapping-walks.
For each given basin B of Mn with say b elements, the restriction of Mn to
B is encoded in a segment of each walk which equals at 0 at some time, and
returns again to 0 after 2b more steps. If the basin contains exactly c cyclic
points, this walk segment of 2b steps will be a concatenation of c excursions
away from 0. Exactly where this segment of 2b steps appears in the mapping-
walk depends on the ordering convention, as does the ordering of excursions
away from 0 within the segment of 2b steps. However, many features of the
action ofMn on the basin B are encoded in the same way in the two di�erent
stretches of length 2b in the two walks, despite the permutation of excursions.
One example is the number of elements in the basin whose height above the
cycles is h, which is encoded in either walk as the number of upcrossings from
h to h+ 1 in the stretch of walk of length 2b corresponding to that basin.

2.2 Symmetry properties of random mappings

We now apply the de�nitions above to a uniform random mapping Mn. Of
course, the random partition fBn;jgj=1;:::;Kn of [n], and the random partition
fCn;jgj=1;:::;Kn of Cn, are the same no matter which ordering convention is
used. Each random partition is exchangeable, meaning its distribution is
invariant under the action of a permutation of [n]. Let us spell out some
further symmetry properties, each of which turns out to have some analog in
the limiting Brownian scheme.
(a) The cycles-�rst ordering has the following very strong symmetry prop-
erty: conditionally given jCnj = m the tree components in cycles-�rst ordering
form an exchangeable sequence of m random subsets of [n]; moreover this
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exchangeable sequence is independent of the sequence of cycle sizes jCn;j j
with

P
j jCn;j j = m. Consequently, given jCnj = m, the cycles-�rst mapping-

walk is a concatenation of m exchangeable excursions away from 0, and this
mapping-walk is independent of jCn;j j; j = 1; 2; : : : ;Kn.
(b) The basins-�rst ordering does not share the symmetry property above.
But it has a di�erent one: given that the basin Bn;1 containing 1 has size
jBn;1j = b, the action of Mn on [n] � Bn;1 is that of a uniform random
mapping of a set of n � b elements. So given jBn;1j = b, the basins-�rst
mapping-walk decomposes after 2b steps into two independent segments: the
�rst 2b steps are distributed like the basins-�rst walk for a uniform mapping
of [b] conditioned to have a single basin, and the remaining 2(n � b) steps
distributed like the basins-�rst walk associated with a uniform mapping of
[n� b].
(c) The sequence of basin sizes (jBn;jj; 1 � j � Kn) does not have the same
distribution for both orderings. For instance, if jBn;1j = 1 in the basins-
�rst ordering then jBn;1j = 1 in the cycles-�rst ordering, but (for n � 3)
not conversely. So the distribution of jBn;1j must be di�erent in the two
orderings.
(d) For a given mapping Mn, the sequence of cycle sizes (jCn;j j; 1 � j � Kn)
may be di�erent for the two di�erent orderings. But for Mn with uniform
distribution on [n][n], the two sequences of cycle sizes have the same distri-
bution: given jCnj = m, either sequence is distributed like the sizes of cycles
of a uniform random permutation of [m] in the (size-biased) order of least
elements of the cycles. That is to say, given jCnj = m, the distribution of
jCn;1j is uniform on [m]; given jCnj = m and jCn;1j with jCnj � jCn;1j = m1,
the distribution of jCn;2j is uniform on [m1], and so on. This is a well known
property of uniform random permutations for the cycles-�rst ordering, and
was shown for the basins-�rst ordering in [2, Lemma 22].

2.3 Brownian asymptotics for the mapping-walks

We now come to the main point of Section 2: the de�nitions of the interval
partitions of Brownian bridge are motivated by the following theorem.

Theorem 6 The scaled mapping-walk (M
[n]
u ; 0 � u � 1), with 2n steps of

�1=pn per unit time, for either the cycles-�rst or the basins-�rst ordering
of excursions corresponding to tree components, converges in distribution to
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2jBbrj jointly with
jCnjp
n

d! L0
1 (7)

where (L0
u; 0 � u � 1) is the process of local time at 0 of Bbr, normalized so

that P (L0
1 > `) = e�

1
2
`2 . Moreover,

(i) for the cycles-�rst ordering, with the cycles Bn;j in order of their least
elements, these two limits in distribution hold jointly with� jBn;jj

n
;
jCn;jjp
n

�
d! (�Ij ; L

0
Ij
) (8)

as j varies, where the limits are the lengths and increments of local time of
Bbr at 0 associated with the interval partition (Ij) := (ITj ); whereas
(ii) [2] for the basins-�rst ordering, with the basins Bn;j listed in order of
their least elements, the same is true, provided the limiting interval partition
is de�ned instead by (Ij) := (IDj ).

The result for basins-�rst ordering is part of [2, Theorem 8]. The variant
for cycles-�rst ordering can be established by a variation of the argument
in [2], exploiting the exchangeability property of the cycles-�rst ordering
(Section 2.2(a) instead of Section 2.2 (b)). See also [10] and [1] for alternate
approaches to the basic result of [2].

We now explain how we �rst discovered the facts about Brownian bridge
presented in Corollary 3 by consideration Theorem 6 and the symmetry prop-
erties of Section 2.2. Note however that we show in Section 6 that the results
of Corollary 3 hold much more generally, so these results do not really in-
volve much of the rich combinatorial structure of mapping digraphs involved
in Theorem 6.
(a) In the basins-�rst ordering, the �rst basin is by de�nition the basin
containing element 1, and its walk-segment ends at the �rst time that the
walk returns to 0 after the basins-�rst search has reached element 1. By
exchangeability one can replace element 1 by a uniform random element, so
the walk-segment corresponds asymptotically to the walk-segment ending at
the �rst time of reaching 0 after a uniform random time on [0; 2n]. Rescaling,
this corresponds to the time interval [0;DV1 ] in De�nition 1.

Now consider the cycles-�rst ordering. The �rst basin is by de�nition
the basin containing the smallest-numbered cyclic element cn;1, and its walk-
segment ends at the �rst time after reaching element cn;1 that the walk returns
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to 0. By exchangeability one can replace element cn;1 by a uniform random
cyclic element, so the walk-segment corresponds asymptotically to the walk-
segment ending at the �rst time of reaching 0 after visiting U�jCnj cyclic
vertices, where U� has uniform[0; 1] distribution. Rescaling, this corresponds
to the time interval [0; T1] in De�nition 2.
(b) The recursive property of the basins-�rst ordering in Section 2.2(b)
plainly corresponds, under the asymptotics of Theorem 6, to the recursive
decomposition of Brownian bridge at time DV1 described later in Lemma 8.
(c) In Section 2.2(c) we observed that the distribution of Bn;1 was di�erent
in the two orderings. This di�erence persists in the limit: Theorem 6 and
the calculation below (26) imply

lim
n
n�1EjBn;1j =

�
E(DV1) = 2=3 (for the basins-�rst ordering)
E(T1) = 1=2 (for the cycles-�rst ordering):

(d) It is well known [41] that the asymptotic distribution as n !1 of the
fractions of elements in cycles of a random permutation of [n], with the cycles
in order of their least elements, (which amounts to a size-biased random order
by exchangeability), is the uniform stick-breaking sequence Uj

Qj�1
i=1 (1� Ui).

So the convergence in distribution (7) of jCnj=
p
n to L0

1, and the \uniform
random permutation" feature of the cyclic decomposition (Section 2.2(d)),

combine to show that with either ordering. jCn;jj=
p
n

d! L0
Ij
with the same

joint distribution:

(L0
Ij
; j � 1)

d
= (L0

1Uj

j�1Y
i=1

(1� Ui); j � 1) (9)

for both Ij = IDj and Ij = ITj . This is part (iv) of Corollary 3, which is
generalized later by (27) and Theorem 25.
(e) Let Bn;(j) be the jth largest basin ofMn, with some arbitrary convention
for breaking ties, and let Cn;(j) be the cycle contained in Bn;(j). It follows
immediately from the convergence in distribution (8) that� jBn;(j)j

n
;
jCn;(j)jp

n

�
d! (�I(j) ; L

0
I(j)

) (10)

jointly as j varies, where I(j) is the length-ranked interval partition derived
from either either (IDj ) or (I

T
j ). This is part (i) of Corollary 3. By exchange-

ability considerations, before passage to the limit the bivariate sequence in
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(8) as j varies is that in (10) biased by cycle-size in the cycles-�rst order and
biased by basin-size in the basins-�rst ordering. Hence the conclusions of
parts (ii) and (iii) of Corollary 3, by a straightforward passage to the limit.
(f) Due to Section 2.2(a), it makes no di�erence to anything if in the cycles-
�rst ordering we replace the ordering within the jth cycle cn;j;1; cn;j;2; : : : ; cn;j
by the possibly more natural cn;j; cn;j;1; cn;j;2; : : : ; cn;j;jCn;j j�1. But in the basins-
�rst ordering, this innocent looking change would spoil convergence to 2jBbrj.
This is because in the basins-�rst ordering the tree with root cn;1 is the tree
containing 1, which is a size-biased choice from the exchangeable random
partition of [n] into tree components. As such, it tends to be a big tree. In
fact, results from [2] imply that, if the mapping-walk is started by the ex-
cursion coding the tree rooted at cn;1, the limit process will start with a zero
free interval whose length is distributed as DU � GU in Lemma 9 below for
� = 1

2
. Such a process is obviously not 2jBbrj or any other familiar Brownian

process.
(g) The proof of Theorem 6 yields more information about the asymptotic
sizes of tree components than can be deduced from the statement of that
theorem. For instance, if jTn;(i)j are the ranked sizes of the tree components
of Mn, and Hn;i are the corresponding maximal tree heights, as in (5), then
(jTn;(i)j=n;Hn;i=

p
n)i=1;2;��� converges in distribution to the sequence of ranked

lengths and corresponding maximal heights of excursions of 2jBbrj, whose
distribution was described in [35, Theorem 1 and Example 8]. If only the
tree components of Bn;j were considered, the limit would be derived from
excursions of Bbr over the appropriate random interval Ij as in Theorem 6,
with joint convergence as j varies.

3 The bridge decompositions

This section presents our main results for the D- and T -partitions. For ease
of comparison, the results are presented together here, with outlines of the
proofs. Some proofs and further details are deferred to Section 4 for the D-
partition, and to Section 5 for the T -partition. Our primary interest is the
analysis of theD- and T -partitions derived from a standard Brownian bridge,
and the connections between these random partitions and the asymptotics
of random mappings discussed in Section 2. But we �nd that our analysis
applies just as well to the D- and T -partitions for a standardized bridge Bbr

derived from B a recurrent self-similar Markov process whose inverse local
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time process at 0 is a stable subordinator of index � for some � 2 (0; 1).
Readers who don't care about this generalization can assume throughout this
section thatB is standard one-dimensional Brownian motion, and � = � = 1

2
.

3.1 General framework

Following Pitman-Yor [35, x2], we make the following basic assumptions:

� B := (Bt; t � 0) is a real or vector-valued strong Markov process,
started at B0 = 0, with state space a cone contained in Rd for some
d = 1; 2; : : :, and c�adl�ag paths.

� B is �-self-similar for some real �. That is to say, if B�[0; t] now denotes
the standardized process derived from B on [0; t] as in (3), using ��I
instead of

p
�I in the denominator, then B�[0; t]

d
= B[0; 1] for all t > 0.

� The point 0 is a regular recurrent point for B, meaning that almost
surely both 0 and 1 are points of accumulation of the zero set of B.

As a well known consequence of these assumptions [14, 35], there exists a
continuous local time process for B at 0, say (L0

t (B); t � 0), whose inverse
process

�` := infft : L0
t (B) > `g (` � 0)

is a stable subordinator of index � for some � 2 (0; 1). That is

E exp(���`) = exp(�`c��) (� � 0) (11)

for some c > 0, in which case

L0
t (B) =

�(1 � �)

c
lim
"!0

"�Nt;"(B) (12)

uniformly for bounded t almost surely, where Nt;"(B) is the number of ex-
cursion intervals of B in [0; t] whose length is greater than ". Formula (12)
can be then used with X instead of B to de�ne L0

t (X) for various other pro-
cesses X derived from B by conditioning or scaling, such as the standardized
bridge Bbr introduced in the next paragraph. As a consequence of (12) with
X instead of B, there is following basic �-scaling rule for such local time
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processes: for I = [GI ;DI ] a random subinterval of length �I := DI � GI

contained in the time domain of X, and L0
I(X) := L0

DI
(X) � L0

GI
(X),

L0
I(X) = ��I L

0
1(X�[I]): (13)

Associated with the self-similar Markov process B are corresponding dis-
tributions of a standard B-bridge Bbr, a standard B-excursion Bex, and a
standard B-meander Bme, de�ned by the following identities in distribution,
valid for all t > 0:

B�[0; Gt]
d
= Bbr; B�[Gt;Dt]

d
= Bex; B�[Gt; t]

d
= Bme (14)

where Gt := Gt(B), Dt := Dt(B), and for any process X we use the notation

Gt(X) := supfu < t : Xu = 0g (15)

Dt(X) := inffu � t : Xu = 0g: (16)

See [9] for a review of properties of Bbr, Bex and Bme in the Brownian case
when B is Brownian motion with state space R, and � = � = 1

2. See [25, x3]
and [34] for some treatment of Bbr and Bex in the Bessel case when B with
state space R�0 is a recurrent Bessel process of dimension � = 2�2� 2 (0; 2),
and � = 1

2. Other examples are provided by recurrent stable L�evy processes
[8], symmetrized or skew Bessel processes [42], and Walsh processes [6, 7].

According to the L�evy-Itô theory of excursions of B, applied to the stan-
dard B-bridge as in [31, 35], if (Iexj ) is the interval partition of [0; 1] de�ned
by the excursion intervals of Bbr in length-ranked order, then the processes
Bbr
� [I

ex
j ] are i.i.d. copies of B

ex, independent of (Iexj ), which is an exchange-
able interval partition in the sense of [16] recalled in Section 6.2. Moreover,
the distribution of ranked lengths (�Iex

j
) depends only on �, as described in

[32, (16)] and [35, Example 8]. This general excursion decomposition of Bbr

implies that various results known for Bessel bridges hold also in the present
general setting, and we take this for granted without further comment.

3.2 Main Results

All results of this section are presented with the notation and general frame-
work of the previous section: Bbr is the standard B-bridge derived from a
self-similar recurrent Markov process B whose continuous local time process
(L0

t (B); t � 0) is the inverse of a stable subordinator (�`; ` � 0) of index
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� 2 (0; 1). The D- and T -partitions are de�ned in terms of Bbr and its local
time process at 0, according to De�nitions 1 and 2.

Corollary 3, presented in the introduction in the Brownian case, is true in
the more general framework of this section, as a consequence of the following
theorem:

Theorem 7 For a random interval I � [0; 1], let �I denote the random
occupation measure induced by the path of Bbr[I], so each Borel subset A of
the state space of Bbr

�I (A) :=

Z
I

1(Bbr
t 2 A)dt:

(i) The sequence of occupation measures (�Ij ) has the same distribution for
each of the two length-ranked partitions (Ij) = (ID(j)) and (Ij) = (IT(j)).

(ii) For (Ij) = (IDj ) the sequence of occupation measures (�Ij ) is in �-biased
order, where �Ij is the total mass of the random measure �Ij .
(iii) For (Ij) = (ITj ) the sequence of occupation measures (�Ij ) is in L

0-biased
order, where L0

Ij
:= L0

Ij
(Bbr).

(iv) For (Ij) equal to any one of the four interval partitions (IDj ), (I
D
(j)),

(ITj ) or (I
T
(j)), conditionally given �Ij = �j and L0

Ij
= `j for all j = 1; 2; : : :,

the random occupation measures �Ij ; j = 1; 2; : : : are independent, with �Ij
distributed like the random occupation measure of a process with the common
conditional distribution of

(B[0; t] jBt = 0; L0
t = `)

d
= (B[0; �`] j �` = t) (17)

for t = �j and ` = `j .

Proof. Propositions 10, 11 and 14 provide more explicit descriptions of
the law of (�Ij ; L

0
Ij
; Bbr

� [Ij])j=1;2;:::, for each of the four interval partitions
(Ij). The above results for occupation measures are deduced from these
propositions using Lemma 13. The fundamental switching identity (17) is
well known [31, x5]. 2

By general theory of local time processes for di�usions or continuous semi-
martingales [15, 39, 38], in the Brownian and Bessel cases for each random
subinterval I of [0; 1] the random occupation measure �I derived from Bbr
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has an almost surely continuous density LxI relative to m at x, where m is
a multiple of the speed measure of the one-dimensional di�usion B. To be
precise about normalization of local times, in the Brownian case with state
space R, we take m(dx) = dx, so that (11) holds with � = 1

2
and c =

p
2.

In the Bessel(�) case with state space R�0, we take m(dx) = 2x��1dx, so
that (11) holds with � = 1 � �=2 and c = 21���(1 � �)=�(�), by [31,
(7.c)]. In either case, L0

Ij
in (iii) and (iv) is recovered like �Ij as a measurable

function of the random occupation measure �Ij . The distribution of the local
time density of the conditional occupation measure in (iv) is described by a
conditional form of the Ray-Knight theorem: see [20, 28] for details in the
Brownian case.

Our analysis of the D-partition is the following expression of the decom-
position of Bbr at the times DVj , implicit in [2] in the Brownian case:

Lemma 8 [2] For each j, the pre-DVj fragment of the bridge Bbr[0;DVj ] is
independent of the standardized post-DVj fragment Bbr

� [DVj ; 1], which has the
same distribution as Bbr.

This is easily veri�ed, because the DVj are stopping times relative to a �ltra-
tion with respect to which Bbr has a strong Markov property.

To describe various distributions, let (�s; s � 0) denote a standard gamma
process, that is the increasing L�evy process with marginal densities

P (�s 2 dx)=dx =
1

�(s)
xs�1 e�x (x > 0); (18)

so �t � �s
d
= �t�s for 0 < s < t. Recall that for a; b > 0 the beta(a; b)

distribution is that of

�a;b := �a=�a+b, which is independent of �a+b, with (19)

P (�a;b 2 du) = �(a+ b)

�(a)�(b)
ua�1(1� u)b�1du (0 < u < 1): (20)

It is well known [25, Lemma 3.7] that for Gt = Gt(B),

the standard B-bridge B�[0; Gt] is independent of Gt with Gt=t
d
= ��;1��.

(21)
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Lemma 9 [2, Prop. 2], [27, Prop. 15] Let U with uniform[0; 1] distribution
be independent of Bbr, and let GU := GU (Bbr), DU := DU (Bbr). Then

(GU ;DU �GU ; 1 �DU )
d
= (��;�1 � ��;�1+� � �1)=�1+�:

Moreover, the random vector (GU ;DU � GU ; 1 � DU ) and the three stan-
dardized processes Bbr

� [0; GU ], Bbr
� [GU ;DU ] and Bbr

� [DU ; 1] are independent,
with

Bbr
� [0; GU ]

d
= Bbr

� [DU ; 1]
d
= Bbr and Bbr

� [GU ;DU ]
d
= Bex: (22)

Proposition 10 For the D-partition
(i) the sequence of lengths is such that

�IDj =Wj

j�1Y
i=1

(1�Wi) (23)

for a sequence of independent random variables Wj with Wj
d
= �1;�.

(ii) The corresponding sequence of local times at 0 can be expressed as

L0
IDj

= ��IDj
L0
1(B

br
� [I

D
j ]) (24)

where the L0
1(B

br
� [I

D
j ]) are independent random variables, independent also

of the lengths �IDj , with

L0
1(B

br
� [I

D
j ])

d
= L0

1(B)
d
= ���1 (25)

for �1 with the stable distribution of index � de�ned by (11).
(iii) The standardized path fragments Bbr

� [I
D
j ] are independent and identically

distributed like Bbr
� [0;DU ], and independent of the sequence of lengths (�IDj ).

(iv) For the length-ranked D-intervals ID(j) instead of IDj , the lengths (�ID(j))

have the Poisson-Dirichlet(�) distribution de�ned by ranking (�IDj ) as in (i),

while parts (ii) and (iii) hold without change.

Proof. Parts (i)-(iii) are obtained by repeated application of Lemmas 8 and
9, using the �-scaling rule (13) for local times and (21), as in [25, Lemma
3.11], for part (ii). The second identity in (ii) is a well-known consequence
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of the inverse relation between (L0
t (B); t � 0) and (�`; ` � 0), as discussed in

[31]. Part (iv) follows immediately from (i)-(iii). 2

See [18, 32] and Lemma 15 for background on the Poisson-Dirichlet dis-
tribution appearing in (iv). L�evy [21] showed that in the Brownian case the

common distribution of L0
1(B) and �

�1=2
1 appearing in (25) is simply the dis-

tribution of jB1j, with B1 standard Gaussian. But this does not generalize

to the Bessel(�) case for general � = 2� 2�. Then B1
d
=
p
2�1��, which is a

simple transformation of the stable(�) distribution of �1 only for � = 1
2
.

The di�culty involved in Theorem 7 is that De�nition 2 of the Tj in-
volves the local time L0

1 := L0
1(B

br), which depends on the path of Bbr over
the whole interval [0; 1]. While we can describe the �nite-dimensional distri-
butions of the bivariate sequence (�ITj ; L

0
ITj
)j=1;2;::: by conditioning on L0

1 (see

Proposition 20), this description is more complicated than our description of
(�ID

j
; L0

IDj
)j=1;2;::: in Proposition 10. In particular,

�IT1

d

6= �ID1 : (26)

Indeed, by (23) we have

E(�ID1 ) = E(W1) = 1=(1 + �) > 1=2;

whereas (by symmetry of Bbr with respect to time reversal in the Brownian
or Bessel case) the distribution of T1 is symmetric about 1

2
, so whatever

� 2 (0; 1)
E(�IT1 ) = E(T1) = 1=2:

Still, as explained combinatorially in the Brownian case around (9), the two
partitions give rise to the same distribution for the sequence of local times:

�
L0
IDj

�
d
=
�
L0
ITj

�
:=

 
L0
1 Uj

j�1Y
i=1

(1 � Ui)

!
(27)

where the second equality by de�nition is read from (1). The �rst equality
in distribution of sequences follows from Lemma 8 and the consequence of
Lemma 9, noted in [2, (3)-(4)] in the Brownian case, that

L0
ID1
=L0

1 has uniform distribution on (0; 1), and is independent of L0
1. (28)
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As indicated in Section 6.2, this can also be checked in general using the
exchangeability of the excursion interval partition.

According to Proposition 10, the standardized bridge fragments over in-
tervals of the D-partition are i.i.d. copies of Bbr

� [0;DU ], both for the intervals
in their original order and for the intervals in length-ranked order. A subtle
feature of the T -partition is that the standardized bridge fragments over its
intervals are neither independent nor identically distributed in their original
order, but these fragments become i.i.d. when put into length-ranked order.
This and other parallels between the T - and D-partitions in length-ranked
order are presented in the following Proposition:

Proposition 11 For the T -partition in length-ranked order
(i) the sequence of lengths (�IT

(j)
) has the same Poisson-Dirichlet(�) distribu-

tion as (�ID(j)).

(ii) The corresponding sequence of local times at 0 can be expressed as

L0
IT
(j)

= ��IT
(j)
L0
1(B

br
� [I

T
(j)]) (29)

where the L0
1(B

br
� [I

T
(j)]) are independent random variables, independent also

of the lengths L0
IT
(j)
, with

L0
1(B

br
� [I

T
(j)])

d
= L0

1(B)
d
= ���1 (30)

just as in (25).
(iii) The standardized path fragments Bbr

� [I
T
(j)] are independent and identically

distributed like B�[0; �1], and independent of the sequence of lengths (�IT(j)
).

The only di�erence between this description of the law of the sequence
(�Ij ; L

0
Ij
; Bbr

� [Ij])j=1;2;::: for Ij = IT(j), and the previous description in Propo-

sition 10 for Ij = ID(j), is that the common distribution of the standard-

ized T -fragments is that of Bbr
� [0;DU ], whereas the common distribution of

the standardized D-fragments is that of B�[0; �1]. The standardized pro-
cess B�[0; �1] is known as the pseudo-bridge associated with the self-similar
Markov process B. The following Lemma was established by Biane, Le Gall
and Yor [11] in the Brownian case, and extended to the Bessel case in [31,
Theorem 5.3].
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Lemma 12 [11],[31]. The law of the pseudo-bridge B�[0; �1] is mutually ab-
solutely continuous with respect to the law of Bbr, with density proportional to
1=L0

1(B) relative to the law of Bbr. That is, for all non-negative measurable
path functionals F

E[F ([B�[0; �1])] =
1

c��(�)
E

�
F (Bbr)

L0
1(B

br)

�
:

where c is determined by the normalization of local time via (11).

While the laws of Bbr
� [0;DU ] and the pseudo-bridge B�[0; �1] are mutually

singular, their random occupation measures have the same distributions. In
fact, the sample path of Bbr

� [0;DU ] is simply a random rearrangement of the
sample path of B�[0; �1]:

Lemma 13 Let U be a uniform (0; 1) variable independent of Bbr, and in-
dependent of X distributed like B�[0; �1]. Then a process Y distributed like
Bbr
� [0;DU ] is created by the following rearrangement of the path of X, whereby

the random occupation measures of X and Y are pathwise identical: let
(GU ;DU ) be the excursion interval of X straddling time U , and let Y be
derived from X by swapping the order of the path fragments X[GU ;DU ] and
X[DU ; 1], say

Y = X[0; GU ] : X[DU ; 1] : X[GU ;DU ] (31)

with an obvious notation for concatenation of path fragments.

Proof. By construction, the path of Y ends with a B-excursion of length
1 � G1(Y ) = DU � GU . The joint law of Y [0; G1(Y )] and Y [G1(Y ); 1] :=
X[GU ;DU ] was described in [31, Theorem 1.3] and [25, Theorem 3.1 and
(3.d)], and is identical to the joint law of Z[0; G1(Z)] and Z[G1(Z); 1] for Z :=
Bbr
� [0;DU (Bbr)], which can be read from Lemma 9. To be explicit, the com-

mon distribution of Y [0; G1(Y )] and Z[0; G1(Z)] is that of B[0; G1(B)] de-
scribed by (21), while both Y�[G1(Y ); 1] := X�[GU ;DU ] and Z�[G1(Y ); 1] :=
Bbr
� [GU(B

br);DU (B
br)] are standard B-excursions. Since the excursion is in

each case independent of the preceding fragment, it follows that Y
d
= Z. 2

Proposition 14 Fix � > 0. Let G be a random variable independent of Bbr,

with G
d
= ��=�. The distributions of the two bivariate sequences, de�ned by
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the lengths and bridge local time measures of intervals of the D-partition and
the T -partition respectively, are determined as follows:
(i) For Ij = IDj the bivariate sequence

(G�Ij ; G
�Lbr

Ij
)j=1;2;::: (32)

is the sequence of points (Xj ; Yj), in X-biased random order, of a Poisson
process on R2

>0 with intensity measure

�(dt; d`) := �t�1e��tdtP (t����1 2 d`) = `�1P (�` 2 dt)e��t (33)

for �1 as in (11), which makes

�jXj
d
=

��
�

and �jYj
d
=

�1

c��
: (34)

(ii) If the points (Xj ; Yj) of a Poisson process with intensity � on R2
>0 are

listed in X-biased order then

(�IDj ; L
0
IDj
)j=1;2;:::

d
=

�
Xj

�X
;
Yj
��X

�
j=1;2;:::

(35)

for �X :=
P

j Xj as in (34).

(iii) For Ij = ITj the bivariate sequence in (32) is the sequence of points,
say (X 0

j ; Y
0
j ), in Y

0-biased random order, of another Poisson process on R2
>0

with the same intensity measure �. So if in (ii) the points (Xj; Yj) are listed
instead in Y -biased order, then (35) holds with the sequence of T -intervals
instead of the sequence of D-intervals.

Proof. Part (i) is proved in Section 4. Part (ii) is just a restatement of part
(i). Part (iii) is proved in Section 5. 2

Note that the normalization in (35) involves �X and its �th power, both
for theD-partition and for the T -partition. Obviously, this is easier to handle
if the sampling is X-biased rather than Y -biased, which is one explanation of
why various distributions associated with (IDj ) are simpler than their coun-
terparts for (ITj ).
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4 Analysis of the D-partition

As a preliminary for the proof of Proposition 14 (i), we recall the following
well known lemma, which characterizes the distribution of a sequence (Qj),
known as the GEM(�) distribution after Gri�ths, Engen and McCloskey.
The distribution of (Q(j)) obtained by ranking (Qj) is known as the Poisson-
Dirichlet distribution with parameter �. See [17], [18, x9.6], [32].

Lemma 15 (Characterizations of GEM(�) [23], [25], [26]) Fix � > 0 and
� > 0. Let G and Qj; j = 1; 2; : : : be non-negative random variables. Then
the following are equivalent:
(i) the sequence (Qj) admits the representation Qj = Wj

Qj�1
i=1 (1�Wi) where

the Wj are independent beta(1; �) variables, and G is independent of (Qj)

with G
d
= ��=�;

(ii)
P

j Qj = 1 a.s. and (GQj) is the sequence of points of a Poisson point

process on R>0 with intensity �t�1e��tdt, listed in size-biased order.

The next well known result [18, x5.2] , [37, Prop. 4.10.1], combined with
the previous lemma, provides an e�cient way to identify various Poisson
processes.

Lemma 16 (Poisson marking)) Let (S;S) and (T;T ) be two measurable
spaces. Let (Xj) and (Yj) be two sequences of random variables, with values in
S and T respectively, such that the counting process

P
j 1(Xj 2 �) is Poisson

with intensity measure � on S, and the Yj are conditionally independent given
(Xj), with

P (Yj 2 � jX1;X2; : : :) = P 0(Xj; �)
for some Markov kernel P 0 from (S;S) to (T;T ). Then the counting processP

j 1((Xj ; Yj) 2 �) is a Poisson process on the product space S � T with
intensity measure �(dx)P 0(x; dy) on the product �-�eld.

Proof of Proposition 14 (i) Proposition 10(i) and Lemma 15 (i) show
that (�IDj ; j � 1) has GEM(�) distribution. By assumption, G is indepen-

dent of this sequence with G
d
= ��=�. Lemma 15 implies that (G�IDj ) is the

size-biased ordering of a Poisson point process of intensity �t�1e��tdt. Propo-
sition 10(ii) and Lemma 16 now identify the (G�IDj ; G

�Lbr
IDj
) as the points of
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a Poisson process with intensity measure � de�ned by the �rst expression in
(33). To check the equality of the two expressions in (33), let

f`(t) := P (�` 2 dt)=dt: (36)

Since �`
d
= `1=��1 by (11),

f`(t) = `�1=�f1(t=`
1=�) (37)

whereas by another change of variables

P (t����1 2 d`)=d` = ��1t`�1�1=�f1(t=`
1=�) = ��1t`�1f`(t) (38)

and the identity follows. By application of (11), the `-marginal of � is
`�1e�c�

�`d`. The distribution of
P

j Yj is the in�nitely divisible law with
this L�evy measure, that is the exponential distribution with rate c��. 2

Implicit in Lemma 12 and (38) is the following formula of [25, (3.u)] for
the density of L0

1 := L0
1(B

br)

P (L0
1 2 d`) = c��(�)`P (���1 2 d`) = c�(�)f`(1)d` (39)

for f`(x) as in (36) the stable(�) density of �` determined by (11). That is
to say, the distribution of L0

1(B
br) is obtained by size-biasing the common

distribution of ���1 and L0
1(B). In particular, the general formula (39) is

consistent with L�evy's well known formulae in the Brownian case [21], with
� = 1

2
; c =

p
2

f`(x) =
`p
2�
x�3=2e�

1
2`

2=x (40)

and

P (L0
1 2 d`)=d` = `e�

1
2 `

2

: (41)

For general �, a series expression for f`(x) is known [36, 43, 44, 40]. If � = 1=n
for some n = 2; 3; : : :, integral expressions for f`(x) can be derived from a
representation of 1=�` as a product of n�1 independent gamma variables [43,
Theorem 3.4.3]. To conclude this section, we record the following immediate
consequence of Proposition 14(i):

Corollary 17 Let (�j) be a sequence of i.i.d. copies of �1 with the stable (�)
distribution (11), and let (Qj) with GEM(�) distribution of Lemma 15 be

independent of (�j). Let Lj := (Qj=�j)� and L :=
P

j Lj. Then L
d
= L0

1 as
in (39), and the sequence (Lj=L) has GEM(1) distribution, independently of
L.
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5 Analysis of the T -partition

We start by recalling the structure of a Markov process up to the last time
it visits its initial state before an independent exponential time. This does
not involve the self-similarity assumption.

Lemma 18 [14] Let (�`; ` � 0) be a drift-free subordinator which is the in-
verse of the continuous local time process (L0

t (B); t � 0) of a regular recurrent
point 0, for a strong Markov process B started at 0. Let " be an exponential
variable with rate �, with " independent of B, and let

G := G"(B) and L := L0
G(B) = L0

"(B): (42)

(i) The local time L has exponential distribution with rate  (�), the Laplace
exponent of the subordinator de�ned by E(e���`) = e� (�)`.
(ii) For ` > 0, there is the equality in distribution of path fragments

(B[0; G] jL = `)
d
= (B[0; �`] j �` < "): (43)

(iii) The joint distribution of (G;L) is

P (G 2 dt; L 2 d`) =  (�)d`e��tP (�` 2 dt): (44)

which is the distribution of the value at time 1 of a drift free bivariate sub-
ordinator with L�evy measure

�(dt; d`) = `�1d`e��tP (�` 2 dt) (45)

whose `-marginal is the L�evy measure `�1e� (�)`d` of the exponential distri-
bution of L.

Proof. These results are derived from Itô's theory of excursions of B, by
letting (Nt; t � 0) be a Poisson process with rate �, independent of B, and
taking " to be the time of the �rst point of N . To brie
y recall the argument,
say that a jump interval (�y�; �y) of the inverse local time process � is marked
if N(�y�; �y] > 0 and unmarked otherwise. Then, by basic theory of Poisson
point processes, the sum of unmarked jumps

�u` :=
X
0<y<`

(�y � �y�)1(N(�y�; �y] = 0) (46)
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de�nes a subordinator with distribution

P (�u` 2 dt) = e (�)`��tP (�` 2 dt): (47)

The left end G of the �rst marked interval is G = �L� = �uL, and the subordi-
nator �u summing unmarked jumps of � is independent of L, the local time
of the �rst marked jump. See also [14, 31, 35, 39]. 2

To be more explicit, part (iii) of the Lemma states that

(G;L)
d
= (�jXj ;�jYj) (48)

for (Xj ; Yj) the points of a Poisson point process on R2
>0 with intensity mea-

sure � de�ned by (45). In particular, for a self-similar B as in Section 3, this
measure � is identical to the measure � featured in (33).

In the setting of Lemma 18, even with construction of the Poisson process
of marks of rate � independent of B, more randomization is required to con-
struct points (Xj ; Yj) such that (48) holds with equality almost surely rather
than just in distribution. But this can be done by the following construction,
which is the basis of our proofs of Proposition 11 and Proposition 14 (iii).

Lemma 19 In the setting of Lemma 18, let I := [GI ;DI ] be a random subin-
terval of [0; 1), where the endpoint 1 is deliberately excluded, to avoid the
jump of the inverse local time process (�`) at time ` = L in the following con-
struction. Suppose I is independent of B and ", and de�ne further random
intervals

IL := [GIL;DIL] and � (IL) := [� (GIL); � (DIL)] (49)

where � (`) := �` for ` � 0.
(i) For y > 0, there is the equality in distribution of path fragments

(B[� (IL)] j�IL = y)
d
= (B[0; �y] j �y < ") (50)

where �IL := DIL � GIL is the increment of local time of B over the time
interval � (IL).
(ii) If (Ij) is an interval partition of [0; 1) which is independent of " and
B, and (�IjL) is the corresponding interval partition of [0; G), then given
the sequence of local time increments (�IjL) the path fragments B[�IjL] are
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conditionally independent with distributions described by (50) for Ij instead
of I.
(iii) If Ij := [V̂j�1; V̂j ] with V̂j := 1�Qj

i=1(1�Ui) for independent uniform(0; 1)
variables Ui independent of B and ", then the bivariate sequence of local time
increments and path fragments

(�IjL; B[� (Ij; L)])j=1;2;::: (51)

is the sequence of points of a Poisson point process on R>0 � 
, in local-
time biased order, for a suitable space of path fragments 
 of arbitrary �nite
length, with intensity measure

`�1P (�` < ";B[0; �`] 2 d!) (52)

whose `-marginal is the L�evy measure `�1e� (�)`d` of the exponential distri-
bution of L with rate  (�).
(iv) Let Xj := � (GIjL)� � (GIjL) be the length and Yj := �IjL the local time
increment associated with the random subinterval � (IjL) of [0; G). Then
the (Xj ; Yj) are the points of a Poisson point process on R2

>0 with intensity
measure � de�ned by (45), in Y -biased random order, and

(G;L) = (�jXj ;�jYj) almost surely. (53)

Proof. The �rst two assertions are straightforward consequences of the
previous Lemma. Part (iii) follows from (ii), the Poisson representation of
GEM(1) in Lemma 15, and Poisson marking. Part (iv) follows from (iii) and
Lemma 18(iii). 2

Proof of Proposition 14 (iii) We will exploit the following construction
of the standard bridge Bbr of the self-similar Markov process B by random
scaling, as in [31] and [35, Lemma 4]. Let

Bbr := B�[0; G"(B)] for " independent of B with "
d
= �1�; (54)

so " is exponential with rate �. Then

G := G"(B)
d
=

��
�

and L := L0
G(B) = G�L0

1(B
br)

d
=

�1

c��
(55)

by (21), (19), and �-scaling of local times, where the exponential distribution
of L is read from Lemma 18. Suppose now that Ij := [V̂j�1; V̂j], for V̂j as in
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Lemma 19. The T -sequence is now constructed as a function of these V̂j and
Bbr := B�[0; G] as in (54) according to De�nition 2, that is

Tj := inffu : L0
u=LB1 > V̂jg: (56)

By 56 and (55),

�IjL = (V̂j � V̂j�1)L = (V̂j � V̂j�1)G
�L0

1(B
br) = G�L0

ITj
(Bbr)

��IjL = �V̂jL � �V̂j�1L
= G�ITj

B�[�IjL] = Bbr
� [I

T
j ]:

Part (iii) of Proposition 14 can now be read from Lemma 19 (iv). 2

Proof of Proposition 11 Parts (i) and (ii) follow immediately from the
result of Proposition 14(iii) proved above. Turning to consideration of the
path fragments, we observe by switching identity (17) that

(B�[0; �`] j �` = t)
d
= (Bbr jL0

1 = `t��) (57)

where L0
1 := L0

1(B
br) as usual, and a regular conditional distribution for Bbr

given L0
1 can be as constructed in [28, Lemma 12]. Hence from (52), if 
1

denotes a suitable space of paths of length 1, the trivariate sequence of local
time increments, lengths of path fragments, and standardized path fragments

(�IjL; ��IjL; B�[�IjL])j=1;2;::: = (G�L0
ITj
(Bbr); G�ITj ; B

br
� [I

T
j ])j=1;2;::: (58)

is a Poisson process on R>0�R>0� 
1 whose intensity measure is

`�1d`P (�` 2 dt)e��tP (Bbr 2 d!1 jL0
1 = `t��): (59)

Using the �rst form of � in (33) to integrate out ` in (59), we see that the
lengths and standardized fragments

(��IjL; B�[�IjL])j=1;2;::: = (G�ITj ; B
br
� [I

T
j ])j=1;2;::: (60)

form a Poisson process on R>0�
1 whose intensity measure is

�t�1e��tdtQ(d!1) (61)

where

Q(d!1) =

Z 1

0

P (Bbr 2 d!1 jL0
1 = y)P (���1 2 dy) = P (B�[0; �1] 2 d!) (62)

by the switching identity (57). The factorization in (61) shows that the
Bbr
� [I

T
j ] are i.i.d. copies of B�[0; �1] when listed in length-ranked order. That

is part (iii) of Proposition 11. 2
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5.1 Further distributional results

We record in this section a number of further formulae related to the distri-
bution of the lengths and local times de�ned by the T -partition.

Proposition 20 For the T -partition the (2n+1)-variate joint density of the
total bridge local time L0

1, the lengths of the �rst n intervals, and the local
times at 0 on these intervals, is given by the formula

P (L0
1 2 d`; �ITj 2 dxj; L

br(ITj ) 2 dyj; 1 � j � n) =

c�(�)d` f`�y1�����yn(1� x1 � � � � � xn)
nY
j=1

dxi dyjfyj (xj)

`� y1 � � � � � yj�1

for fy(x) := P (�y 2 dx)=dx the stable(�) density as in (36).

Proof. This follows from the switching identity (17) and the de�nition of
the T -partition. 2

While the distributions of the cut times Tk and interval lengths (Tk�Tk�1)
in principle determined Proposition 20, formulae for these distributions are
more easily obtained as follows. For 0 < u < 1, let

�bru := infft : L0
t=L

0
1 = ug

where (L0
t ; 0 � t � 1) is the local time process at 0 of Bbr. Then by use of

the switching identity (17) we can write down for 0 < x < 1, 0 < ` <1,

P (�bru 2 dx jL0
1 = `)=dx =

fu`(x)f�u`(�x)

f`(1)
: (63)

Integrating out with respect to the distribution (39) of L0
1 gives the density

P (�bru 2 dx)=dx = c�(�)

Z 1

0

fu`(x)f�u`(�x)d`: (64)

which can be simpli�ed using L�evy's formula (40) in the Brownian case to
give for � = 1

2

P (�bru 2 dx)=dx =
u �u

2(�xu2 + x�u2)3=2
(0 < u; x < 1): (65)
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In particular, for u = 1
2
we recover the the result of [9, Theorem 3.2] that

�br1=2 has uniform distribution on [0; 1] in the Brownian case.

According to De�nition 2, Tk := �br
V̂k
, for V̂k independent of Bbr with

1� V̂k
d
= V̂k � V̂k�1

d
= �k

for �k is a product of k independent uniform(0; 1) variables, with

P (�k 2 du)
du

=
(� log u)k�1

(k � 1)!
and

1X
k=1

P (�k 2 du)
du

=
1

u
(66)

because log �k is the k'th point of a rate 1 Poisson process on [0;1). Since
the process (� bru ; 0 � u � 1) has exchangeable increments, we �nd that 1�Tk
and the length of the kth T -interval have the common distribution

P (1 � Tk 2 dx) = P (�IT
k
2 dx) =

Z 1

0

P (�bru 2 dx)P (�k 2 du): (67)

In particular, in the Brownian case � = 1
2
, (67) and (65) yield the curious

formula

P (T1 2 dx)
dx

=
h(x) + h(�x)

2
with h(x) :=

1p
x
+ log

�
1p
x
� 1

�
: (68)

Corollary 21 The point process of lengths of T -intervals has mean density

1X
k=1

P (�ITk 2 dx) = �x�1(1� x)��1dx =

Z 1

0

P (�bru 2 dx)u�1du (69)

for x 2 (0; 1).

Proof. The �rst equality is read from part (i) of Proposition 11 and the
well known formula for the mean density of points of a Poisson-Dirichlet(�)
distributed sequence [32, (6)], which can be read from Lemma 15. The second
equality is then read from (67) and (66). 2

For general �, the second equality in (69) does not seem very obvious from
(63) and (64). However, it can be checked for � = 1

2 using (65), and it can
also be veri�ed by a very general argument, which we indicate in Section 6.3.
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Path decompositions of Bbr at the times Tk are more complicated than the
corresponding decompositions for the times DVj expressed by Lemma 8. For
the T -partition, the pieces are not pure B-bridges. Rather, when normalized
they have density factors involving their local times at 0. Compare with
similar constructions in [11, 13, 25, 33].

By the Poisson analysis of the previous section, conditionally given (T1; L0
T1
; L0

1)
the pieces of Bbr before and after time T1 are independent B-bridges with
prescribed lengths and local times at 0. The appearance of h+ k in formula
(a) below shows that the right side does not factor into a function of (x; h)
and a function of (x; k). So even in the Brownian case, L0

T1
and L0

1�L0
T1

are
not conditionally independent given T1, and hence the same can be said of
the fragments of Bbr before and after time T1.

Proposition 22 In the Browian case with � = 1
2
, c =

p
2,

P (T1 2 dx; L0
T1
2 dh; L0

1 � L0
T1
2 dk)

dx dh dk
=

h kp
2�

(x�x)�
3
2

(h+ k)
exp

�
�h

2

2x
� k2

2�x

�
while for

X :=
L0
T1p
T1

= L0
1(B

br
� [0; T1]) and Y :=

L0
1 � L0

T1p
1 � T1

= L0
1(B

br
� [T1; 1]):

there is the joint density

P (X 2 da; Y 2 db)
da db

=
a bp
2�
I(a; b) exp

�
�a

2

2
� b2

2

�
(70)

where

I(a; b) :=

Z 1

0

(x�x)�1=2

a
p
x+ b

p
�x
dx =

1

r
log

�
(r + a)(r + b)

(r � a)(r � b)

�
for r :=

p
a2 + b2.

Proof. The �rst formula is an instance of Proposition 20 which we now
check. With notation as in (63),

P (T1 2 dx jL0
T1

= h;L0
1 � L0

T1
= k)=dx = f(x ju; `)

for h = u` and k = �u`. We also know, by de�nition of T1, that

P (L0
T1
2 dh; L0

1 � L0
T1
2 dk) = dh dk e�

1
2
`2
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where ` = h+k and an `�1 has canceled the factor of ` in the density (41) of
L0
1. Combining these formulae gives the trivariate density of (T1; L0

T1
; L0

1 �
L0
T1
), which rescales to give

P (T1 2 dx;X 2 da; Y 2 db)
dx da db

=
a bp
2�

(x�x)�
1
2

(a
p
x+ b

p
�x)

exp

�
�a

2

2
� b2

2

�
:

and (70) follows by integrating out x. 2

6 Complements

6.1 Mappings conditioned to have a single basin

In the Brownian case, a variation of the transformation from X to Y in
Lemma 13, which further swaps the exchangeable pair of fragments X[0; GU ]
and X[DU ; 1], is the continuous analog of the transformation, mentioned in
Fact (2.2)(e) from the stretch of the cycles-�rst mapping walk for a given
basin to the stretch of the basins-�rst walk for the same basin. As pointed
out in the last section of [2], if the uniform mapping of [n] is conditioned to
have only one cycle, the scaled basins-�rst walk converges in distribution to
the process 2jBbr

� [0;DU (Bbr)]j. The above argument yields:

Corollary 23 For a uniform mapping of [n] conditioned to have only one
cycle, the scaled cycles-�rst walk converges in distribution to 2jB�[0; �1]j where
B�[0; �1] is the Brownian pseudo-bridge.

The distributions of several basic functionals of pseudo-bridge B�[0; �1] are
known. In particular, the occupation density of the re
ected process is gov-
erned by the same stochastic di�erential equation governing the occupation
density process of a re
ecting Brownian bridge or Brownian excursion [28].
According to Knight [19] (see also [33] and papers cited there), the law of the
maximumof the re
ected pseudo-bridge is identical to that of 1=(2

p
H1(R3))

where H1(R3) is the hitting time of 1 by the three-dimensional Bessel pro-
cess, with transform E(exp(�1

2�
2H1(R3))) = �= sinh � for real �. Thus we

deduce:

Corollary 24 For a uniform mapping of [n] conditioned to have only one
cycle, the asymptotic distribution of the maximum height of any tree above
the cycle, normalized by

p
n, is the distribution of 1=

p
H1(R3).
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See also [12] for a survey of closely related distributions and their applica-
tions.

6.2 Exchangeable interval partitions

Suppose that (Iexj ) is an exchangeable interval partition of [0; 1]. That is
(assuming for simplicity that the lengths �Iex

j
are almost surely all distinct),

for each n = 2; 3; : : : such that �Iex
(n)
> 0, where (Iex(j)) is the associated length-

ranked interval partition, conditionally given �Iex(n) > 0 the ordering of the

longest n sub-intervals Iex(j); 1 � j � n is equally likely to be any one of the
n! possible orders, independently of the lengths of these n intervals. Call
(Iexj ) in�nite if P (�Iex(n) > 0) = 1 for all n. As shown by Kallenberg [16],

for an in�nite exchangeable interval partition (Iexj ), for each u 2 [0; 1] the
fraction of the longest n intervals that lie to the left of u has an almost sure
limit �L0

u as n !1. The process (�L0
u; 0 � u � 1) is a continuous increasing

process, the normalized local time process of (Iexj ). It is easily shown that for
Bbr as in previous sections, and more generally for Bbr the standard bridge
of any nice recurrent Markov process, constructed as in [13], the interval
partition (Iexj ) de�ned by the excursions of Bbr away from 0 is an in�nite
exchangeable interval partition of [0; 1], whose normalized local time process
is �L0

u = L0
u=L

0
1; 0 � u � 1 for any of the usual Markovian de�nitions of a

bridge local time process L0
u := L0

u(B
br). In particular, this remark applies

to a self-similar recurrent process B as considered in previous sections.

Theorem 25 The assertions of Corollary 3 remain valid for the D- and T -
partitions de�ned by De�nitions 1 and 2 for any in�nite exchangeable inter-
val partition (Iexj ) instead of the excursion intervals of a standard Brownian
bridge Bbr, with the complement of [jIexj in [0; 1] instead of the zero set of
Bbr, and the normalized local time process (�L0

u; 0 � u � 1) of (Iexj ) instead of
(L0

u=L
0
1; 0 � u � 1). Moreover, the sequence of normalized local times (�L0

Ij
)

has the same GEM(1) distribution for Ij = IDj as for Ij = ITj .

Theorem 25 can be derived from a certain combinatorial analog, stated
and proved as Lemma 26 below. Let us brie
y outline the method of deriva-
tion, without details. Consider an in�nite exchangeable interval partition
(Ij). Take k independent uniform (0; 1) sample points, assign \weight" 1=k

to each, and let (I
(k)
j ) be the intervals containing at least one sample point.
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Each interval I
(k)
j is thereby assigned weight 1=k� (number of sample points

in interval). For �xed k we can apply Lemma 26, interpreting \length" as
\weight", and conditionally on the number of intervals in the partition. The
conclusion of Lemma 26 is a variant of the desired Corollary 3 for (Ij), in
which \position x 2 (0; 1)" of interval endpoint is replaced by \1=k� (num-
ber of sample points in (0; x))", and in which \normalized local time at
u 2 (0; 1)" is replaced by \relative number of sampled intervals in (0; u)".
One can now argue that as k!1 we have a.s. convergence of these variant
quantities to the original quantities in Theorem 25.

Lemma 26 Let (Iexi )1�i�n be an exchangeable interval partition of [0; 1] into
n subintervals of strictly positive length. De�ne DVj as in De�nition 1 for
1 � j � JDn , where Jn is the �rst j such that DVj = 1, to create a D-
partition (IDj )1�j�JDn of [0; 1], and de�ne a T -partition (ITj )1�j�JTn of [0; 1]
similarly using cut points Tj; 1 � j � JTn determined as follows: given that
the random set of endpoints of (Iexj )1�j�n is U := fujg0�j�n with 0 = u0 <
u1 < � � � < un = 1, let T1 have uniform distribution on U \ (0; 1], and given
also T1 = t1 < 1 let T2 have uniform distribution on U \ (t1; 1], and so
on, until TJTn = 1. For Ij an interval of either of the D- or T -partitions
so de�ned, let NIj denote the number of intervals of (Iexi )1�i�n which are
contained in Ij, so 1 � NIj � n. Then the assertions of Corollary 3 remain
valid provided that NIj is substituted everywhere for L0

Ij
.

Proof. We will check that part (i) of Corollary 3 holds in this setup, along
with (72). The remaining claims are straightforward and left to the reader.
By conditioning on the ranked lengths �Iex

(j)
of the intervals (Iexi )1�i�n, it

su�ces to consider the case when these ranked lengths are distinct constants.
Let �D

n denote the random partition of [n] de�ned by the random equivalence
relation i � j i� Iex(i) and I

ex
(j) are part of the same component interval of the

D-partition, and de�ne �T
n similarly in terms of the T -partition. Since each

unordered collection of lengths and sub-interval counts is a function of the

corresponding partition, it su�ces to show that �D
n

d
= �T

n . Due to the well
known connection between the discrete stick-breaking scheme used to de�ne
the T -partition and the cycle structure of random permutations, which was
recalled in Section 2.2 (d), we can write down the distribution of �T

n without
calculation: for each unordered partition of [n] into k non-empty subsets
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fA1; : : : ; Akg,

P (�T
n = fA1; : : : ; Akg) = 1

n!

kY
j=1

(jAjj � 1)! (71)

where jAij is the number of elements of Ai. On the other hand, for the
D-partition, for each ordered partition (A1; : : : ; Ak) and each choice of aj 2
Aj,1 � j � k, with �(a) the length of Iex(a) and �(A) :=

P
a2A �(a), we can

write down the probability

P (IDj = [a2AjIex(a) and Iex(aj) has right end DVj) =
1

n!

kY
j=1

(jAjj�1)!
�(aj)Pk
i=j �(Ai)

where the factors of (jAjj � 1)! come from the di�erent possible orderings of
all but the last Iex(i) to form IDj . If we now sum over all choices of aj 2 Aj, for

each 1 � j � k, we �nd that �(aj) is simply replaced by �(Aj). If we then
replace (A1; : : : ; Ak) by (A�(1); : : : ; A(�(k)) and sum over all permutations �
of [k], to consider all sequences of sets consistent with a given unordered
partition fA1; : : : ; Akg, we get precisely (71) for �D

n instead of �T
n , due to

the identity X
�

kY
j=1

�(A�(j))Pk
i=j �(A�(i))

= 1:

This is obvious, because the product is the probability of picking the sequence
of sets (A�(j); 1 � j � k) in a process of �(Ai)-biased sampling of blocks of
the partition fA1; : : : ; Akg. 2

We note the consequence of the previous proof that the number of com-
ponents JDn of the D-partition and the number of components JTn of the
T -partition have the same distribution, which is the same for every exchange-
able interval partition (Iexi )1�i�n of [0; 1] into n subintervals of strictly positive
length:

JDn
d
= JTn

d
= Kn

d
=

nX
i=1

1Ci (72)

where Kn is the number of cycles of a uniformly distributed random per-
mutation of [n], and the Ci are independent events with P (Ci) = 1=i. The
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second two of these equalities in distribution are well known and easily ex-
plained without calculation [26]. But the �rst is quite surprising, and we do
not see how to explain it any more simply than by the previous proof.

6.3 Intensity measures

In this section we check Corollary 21 by showing it can be generalized and
proved as follows:

Corollary 27 In the setting of Theorem 25, the common intensity measure
of the the point process of lengths of T -intervals and the the point process of
lengths of D-intervals is

1X
k=1

P (�IT
k
2 dx) =

1X
k=1

P (�ID
k
2 dx) = P (DV1 2 dx)

x
=

Z 1

0

P (��u 2 dx)
u

du

(73)
where ��u := infft : �L0

t > ug is the inverse of the normalized local time process
of the exchangeable interval partition.

Proof. The equality of the �rst three measures displayed in (73) is read
from the conclusion of Theorem 25, using the fact that the D-partition is
in length-biased order. The equality of the �rst and fourth measures follows
from the de�nition of the Tk, the exchangeable increments of (��u; 0 � u � 1),
and (66), just as in the proof of (69). 2

As a check on Theorem 25, let us verify the equality of the second and
fourth measures in (73) in the following special case, which includes the
setting of Corollary 21.

Let (�`; ` � 0) be the inverse local time process of B at 0, for B as in
Lemma 18 not necessarily self-similar. Note that we must explicitly assume
(�`; ` � 0) is drift free for the conclusion of part (iii) of that Lemma to be
true. We assume that now. Assume that the L�evy measure of (�`; ` � 0) has
density �(x). Let (Iexj ) be the exchangeable partition of [0; 1] generated by
the excursion intervals of B conditional on B1 = 0 and L1(B) = ` for some
�xed ` > 0, or equivalently by the jumps of (�s; 0 � s � `) given �` = 1.
Then, formula (63) generalizes easily to show that the fourth measure in (73)
has density at x Z 1

0

u�1du
fu`(x)f�u`(�x)

f`(1)
(74)
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for f`(x) as in (36). On the other hand, abbreviating D := DV1 and G := GV1

so [G;D] is the interval Iexj which covers the independent uniform time V1,
we know from (75) that for 0 < w < 1

P (1 � (D �G) 2 dw) = `�(1 �w)(1 � w)f`(w)dw

f`(1)
:

Also, it is easily seen that conditionally given 1�(D�G) = w, the normalized
local time �L0

G is uniform on (0; 1) and independent of the pair (G; 1 �D),
which is distributed like (�u`; ��u`) conditioned on �` = w. Together with the
previous formula for w = y + 1� x, this gives the trivariate density

P (�L0
G 2 du;G 2 dy;D 2 dx)

du dy dx
=
`�(x� y)(x� y)fu`(y)f�u`(�x)

f`(1)
(0 < y < x < 1)

Now (75) implies thatZ y

0

fu`(y)�(x� y)(x� y)dy =
xfu`(x)

u`

so we deduce that

P (�L0
G 2 du;D 2 dx)

du dx
=
xfu`(y)f�u`(�x)

uf`(1)

and hence that the density displayed in (74) is indeed x�1P (D 2 dx)=dx.

6.4 Two orderings of a bivariate Poisson process

According to Proposition 14, for each � 2 (0; 1) the Poisson point process
with intensity measure �(dx; dy) = �(x; y)dxdy displayed in (33) has the
following paradoxical property:

� (a) If the points (Xj; Yj) are put in X-biased order, then the Yj are in
Y -biased order, whereas

� (b) if the points (Xj; Yj) are put in Y -biased order, then the Xj are
not in X-biased random order; even the distribution of X1 is wrong.

We �rst see this for � = 1
2 by passage to the limit of elementary combina-

torial properties of uniform random mappings. We then see it for general
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� from the bridge representations of Proposition 14. Other point processes
of lengths and local times with these properties can be constructed from an
exchangeable interval partition, as shown by Theorem 25 in the previous sec-
tion and Lemma 15. This argument, shows that (a) holds for the bivariate
Poisson process with intensity (45) featured in Lemma 18, for any drift free
subordinator (�y; y � 0) with E(e���y) = e� (�)y. Then the Yj normalized
by their sum have GEM(1) distribution, both for an X-biased and for a
Y -biased ordering. We o�er here a slightly di�erent explanation of (a) in
this case. That is, given some joint density �(x; y), we indicate conditions on
� which are necessary and su�cient for (a) to hold for the bivariate Poisson
process with intensity �, and then check that these conditions are in fact
satis�ed in the case (45).

Let (Xj ; Yj) be the points of a Poisson process on R2
>0 with intensity

�(x; y)dxdy, in X-biased order. Let �X :=
P

j Xj and �Y :=
P

j Yj . Let

fX(x) := P (�X 2 dx)=dx; fY (y) := P (�Y 2 dy)=dy

�X(x) :=

Z 1

0

�(x; y)dy; �Y (y) :=

Z 1

0

�(x; y)dx:

By a basic Palm calculation, as in [25]

P (X1 2 dx;�X �X1 2 dw) = �X(x)dx fX(w)dw
x

x+ w
(75)

and similarly, with

fX;Y (x; y) := P (�X 2 dx;�Y 2 dy)=(dxdy)
P (X1 2 dx; Y1 2 dy;�X �X1 2 dw;�Y � Y1 2 dv) (76)

= �(x; y) dx dy fX;Y (w; v) dw dv
x

x+ w
:

Now, a necessary condition for the Yj to be in Y -biased order is that Y1
should have the same joint distribution with �Y as if Y1 were a size-biased
pick from the Yi, that is like (75)

P (Y1 2 dy;�Y � Y1 2 dv) = �Y (y)dy fY (v)dv
y

y + v
: (77)

Thus a necessary condition on �(x; y) for (a) to hold is that for all y; v � 0Z 1

0

dx

Z 1

0

dw�(x; y)fX;Y (w; v)
x

x+ w
= �Y (y)fY (v)

y

y + v
: (78)
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Moreover, by keeping track of the �rst k of the (Xj ; Yj) jointly with �X and
�Y it is clear that we can write down a multivariate version of (78) whose
truth for all k would be necessary and su�cient for (a).

In the special case (45), with fy(x) := P (�y 2 dx)=dx, the subordination
argument gives

�(x; y) = y�1fy(x)e
��x:

Since the Y -marginal is exponential with rate  (�),

fY (y) =  (�)y�Y (y) =  (�)e� (�)y

and hence by generalization of (43), using (�X ;�Y )
d
= (G;L),

fX;Y (x; y) =  (�)fy(x)e
��x =  (�)y�(x; y):

If these expressions are substituted in (78), and we use the de�nition of  (�)
on the right side, we �nd that (78) reduces to the identity

E

�
�y

�y + �ve��(�y+�v)

�
=

y

y + v
E
�
e��(�y+�v)

�
:

But this is true by virtue of

E

�
�y

�y + �v

���� �y + �v

�
=

y

y + v

which holds by exchangeability of increments of (�`; ` � 0). Moreover, the
multivariate form of (78) mentioned above is easily checked the same way.
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