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Abstract

We consider the sets of moving-average and autoregressive processes and study
their closures under the Mallows metric and the total variation convergence on finite
dimensional distributions. These closures are unexpectedly large, containing non-
ergodic processes which are Poisson sums of 1.i.d. copies from a stationary process.
The presence of these non-ergodic Poisson sum processes has immediate implications.
In particular, identifiability of the hypothesis of linearity of a process is in question.

A discussion of some of these issues for the set of moving-average processes has
already been given without proof in Bickel and Biilhlmann (1996). We establish here
the precise mathematical arguments and present some additional extensions: results
about the closure of autoregressive processes and natural sub-sets of moving-average
and autoregressive processes which are closed.
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1 Introduction

We consider the characterization of closures of sets of stationary stochastic processes
(Xi)iem, % = {0,£1,42,...}, in order to obtain interesting implications about test-
ing hypotheses, such as linearity of a process. A preliminary discussion of this issue has
been given in Bickel and Biihlmann (1996), for additional motivation and interpretation
we refer to that article.

A linear process (X;)icz is most often referred to

X, = ilﬁjét_j (t e 7), (1.1)

7=0

where (¢;);ez is an i.i.d. sequence with E[e;] = 0, Ele|? < oo and 220 lb]? < oo. Such
processes are also called moving-average (MA) processes. Here, we always assume exis-
tence of second moments. There is no loss of generality in assuming E[X,] = 0.

Under some circumstances, when the MA transfer function ¥(z) = >°72, ijzj exists and
has no zeros in |z] < 1 (2 € €), then such an MA process can be inverted and is also
representable as an (invertible) autoregressive (AR) process

Xt = Z¢]Xt_] + &4 (t € Z), (12)

i=1

where the coefficients (¢;)jen are given by 1/¥(z) = 1— 372, ¢;27 (|2] < 1, z € €), cf.
Hannan (1987).

We study here the closure of MA processes as given in (1.1) (MA closure) and of
AR processes as given in (1.2) (AR closure). The notion of a closed set requires the
specification of a topology. We work here with the Mallows metric (Mallows, 1972),
also known as the Wasserstein metric, and with the variation metric. For details see
section 2. We always identify real-valued stochastic processes, indexed by 7, with their
corresponding probability distributions; we then prefer to state our results in terms of
stochastic processes.

Somewhat surprisingly, the set of MA processes as well as the set of invertible AR
processes is not closed. We will show that the MA and AR closures are exhausted by
three types of processes. The first type is the set of stationary Gaussian processes with
mean zero, i.e.,

S1 = A{(X¢)tem; (X¢)iem stationary Gaussian process with E[X] = 0}.
The second type is the set of genuine MA processes, i.e.,
So = {(X¢)iem; X¢ as defined in (1.1)}.

The third type which arises is more surprising. We essentially can get Poisson sums of
independent and identically distributed copies of stationary processes in the following
sense. Denote by

(ft;l)te% (ft;z)tez, -



a sequence of independent, real-valued, stationary processes with mean zero and finite
second moments E|;]? = 0'52;1, El&0]? = 0'52;2, ... Moreover, we construct for every
i€ IN={1,2,...} asequence of independent copies of (&, )iez, namely

(§ti)tem, (ei2)ienms - -

Thus we have constructed a sequence of processes

{(&,;)tem}i jen independent processes over the index set 7,j € IN,
(Euin)iem, (Ei2henm, ... 1id., E[&; ;] = 0 for all j € N. (1.3)

Let
Ny, Ns,... independent, N; ~ Poisson(A;), A; > 0 for all + € N. (1.4)

Then the third type is given by the following set of processes,

o N;
S3={ (Xt)iem; X¢ = Zth;i,ja (Euinj)eem, Ni satisfying (1.3), (1.4)

=1 7=1

and Z /\iagﬂ < 00}

=1

We make the convention that Z?:l &5 = 0. Elements of S3, are typically non-ergodic
processes whose finite dimensional distributions are infinitely divisible non-Gaussian.

The different sets 57, 53, S5 are not disjoint and the representations are not unique.
Also, to exhaust the MA and AR closures we need sums of processes of the different types.
We introduce an adding operation for processes and define

(X )em D (Yi)iem is the process (X + Y;)iem, where

the processes (X;)iez and (Y;)iez are independent.
We then set
Si @ S] = {(Xt)tEZ D (Yt)tEZ§ (Xt)tEZ €55, (Yt)tEZ € Sj}v i,] € {17273}7

and make the common convention that all 5; (i = 1,2,3) also contain the null element
X, =0forall t € Z.

We now summarize the discussion in Bickel and Biithlmann (1996) and some new results
in a rather narrative way, without giving here the regularity assumptions we work with.
The precise formulations and proofs are given in sections 2 — 5.

Fact 1.1 The closure of the set of MA processes is characterized by

MA closure = {51 @ S92} U {51 P S5}.



Details are given in Theorem 3.1 and Theorem 3.2.
The limiting operation of sequences of MA processes converging to processes in S5 is
constructive.

Example 1.1 Consider the sequence of finite order MA processes,

Xt(n) = ij;lUt—j;nZt—j;n (t € Z)’

i=1

with Uy i.id., P[U, =1]=1-P[U; =0]= A/n (A > 0), Z; i.i.d. ~ t5, Student’s-¢ distri-
bution with 5 degrees of freedom, and coefficients (;,1);en which are a fixed realization
of the Gaussian AR(1), {1 = 0.9&;,_11 + n;, n; 1.i.d. ~ N(0,1).

For every n € IN, these are ergodic MA(n) processes. But for large n, they exhibit a
behavior which can be interpreted as non-ergodic and non-stationary and which seems far
from what one expects of a linear process. The reason is that they are then close to a
non-ergodic member in S5, see proof of Theorem 3.1 (ii), in particular formula (5.11).

We show in Figures 1.1 — 1.4 four long realizations of sample size 5000 of the process
in Example 1.1 with n =5, 25, 50, 200, always with the same realization ({1 );en. For
small n, the realizations in Figures 1.1 and 1.2 look stationary. But for larger n, Figures
1.3 and 1.4 tell us that different stretches of the sequences exhibit very different behaviors,
indicating non-stationarity and non-ergodicity. This is the typical pattern for a time series
with innovation outliers, cf. Kleiner et al. (1979). Indeed, our model is an extreme case
with innovations being either zero with probability 1 — A/n or being a realization from
a long-tailed distribution with probability A/n. Note that outliers are with reference to
the Gaussian distribution; it is the non-normality of innovations which can lead to MA
processes being close to a process in Ss.

Fact 1.2 Given any infinitely long realization (&;)iem of a stationary process, there exists
a non-ergodic, stationary process (X¢)iem in the MA closure, being an element of Ss,
having with positive probability exactly the same sample path as (& )iem. More precisely,

P[X, =& for allt € 7|(&)ier] > 0.36 almost surely.

Details are given in Theorem 3.3. This separation dilemma is evidently related to de
Finetti’s Theorem about the impossibility of distinguishing exchangeable from i.i.d. se-
quences, cf. Hartigan (1983, Ch. 4.6).

Fact 1.2 can be restated as,

Fact 1.3 In testing the hypothesis Hy about MA representation against any fized one-
point alternative H 4 about a nonlinear, stationary process, there is no test with asymptotic
significance level a < 0.36 having limiting power one as the sample size tends to infinity.

In some cases, there is a way out of the separation and testing dilemma.

Fact 1.4 There exists a closed subset of MA processes with nice densities with respect to
the Lebesgue measure for the innovations and with MA coefficients (v;);en, decaying as
fast as Z?‘;Ojﬁlb]z < 00 for some 3 > 0.
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Figure 1.1: one long realization of IExample 1.1 with n =5, A =35
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Figure 1.2: one long realization of Example 1.1 with n =25, A =5
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Figure 1.3: one long realization of Example 1.1 with n =50, A =5
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Figure 1.4: one long realization of Example 1.1 with n = 200, A =5




Details are given in Theorem 3.4.
For the closure of autoregressive processes we obtain the following,

Fact 1.5 The closure of the set of invertible AR processes is described by
AR closure C {51 @ S2}U {51 & S3}.

Details are given in Theorem 4.1, Theorem 4.2 and Proposition 4.1. Similar to Fact 1.4
we have,

Fact 1.6 There exists a closed subset of invertible (causal) AR processes with nice den-
sities with respect to the Lebesgue measure for the innovations and with AR coefficients
(¢))jen decaying as fast as 3 72, j°lo;| < oo for some B > 1. In particular, all the
elements in such a closure are ergodic processes.

Details are given in Theorem 4.3.

2 Probability space, metric and closure

Our framework is the following. We consider real-valued, stationary processes (X;);ez with
expectation zero and finite variances. The expectation zero assumption is not restrictive.
Thus, an appropriate probability space is (]RZ,B,P), where B denotes the Borel o-field
on R% and P a class of stationary probability measures on (]RZ,B), such that for every
PeP,

]Ep[X]:/Rxd(POWO_l)(x):O, ]Ep|X|2:/Rac2d(Po7r0_1)(x)<oo,

where m;, 4 R% — R™, (zihiem — (T ooy Teyy)s Ty e e oy b € 2L
We always identify a probability measure P € P with its corresponding real-valued
stochastic process.

The space P can be equipped with a metric d, examples will be given in sections 2.1 and
2.2. We also use the notation for the corresponding processes on RZ, d((X;)iez, (YV:)iem) =
d(P,Q), where (X¢)iem ~ P, (Xt)tem ~ . Such a metric d induces then the closure of
sets in P in the usual topological sense.

Definition 2.1 Let A be a set of real-valued, stationary processes, indexed by 74, with
corresponding probability measures in P. The d closure A of A is defined as

A={ (Xi)tem; 3 a sequence {(Xy)temtnen with (Xip)iem € A for alln € N
such that d((Xtn)iem, (X¢)tem) — 0 (n — o0)}.

We are particularly interested in the d closures of moving average (MA) and autoregressive
(AR) processes. Thus, we will consider sequences

MA processes: {( X, = Z Vjin€i—jm )t€Z  neN (2.1)
j=0

AR processes: {( Xy, = Z Biin Xt—jim + Etyn )teZ I neN- (2.2)
=



We look here at MA and AR processes of infinite order. All our results are also true for
sequences of finite (generally unbounded) order MA and AR processes, which are more
common in statistical modeling. In the sequel we refer to the MA and AR closure with
respect to the d metric the closure of sequences of MA and AR processes respectively, as
given by Definition 2.1.

2.1 Mallows metric

The Mallows metric dg2 on P, related to non-uniform weak convergence for finite dimen-
sional distributions, is defined by

do( Py, Py) = Z Plo7r1 moPromy! 277 P Py € P,

m=1

(Qm)(Pl o 7r1 ms P2 o Ly = inf{E®||X - Y||>)Y/?} when the infimum is taken
over all jointly dlstrlbuted (X,Y) € R?™ having marginals P; o ﬂil
||| denotes the Euclidean norm in R™.

The following characterization is useful. Let P,, P € P and denote by = weak

convergence of probability measures. Then,

where d

-1
wm and P2 © 7T-1,...,m7

dy(P,, P) — 0 (n — o0)

is equivalent to the following two statements

P,o ﬂa}...7tm = Po ﬂa}m’tm (n— o0) forall t4,...,t, € Z, m € N,

/Ryczd(Pno%_l)(x)—>/Ryczd(Po7r0_1)(x) (n — o),

i.e., all finite dimensional distributions at t1,...,t,, converge weakly and the variance of
the one-dimensional marginal converges, see Bickel and Freedman (1981).

2.2 Variation metric

The question about distinguishing perfectly between two stationary processes requires a
stronger metric than the Mallows dy. The variation metric allows a precise formulation.
As before, let Py, P, € P and define the variation metric as
Pl,PQ Z Plo7r1 P207T11

geeey T

)27,

m=1
where d( )(Pl o 7r1 ms Promi L) =sup{|Pro 7r1 mlA] = Pyor LAl A € B(R™)Y,
B(R™) the Borel o- ﬁeld of R™. This definition reflects non-uniform convergence of finite
dimensional distributions in the variation metric. Here we do not require convergence
of second moments. Distinguishing perfectly is characterized as follows. Let Py, P, be
ergodic probability measures in P. Then

dy (P, Py) > 0if and only if
there exist test functions ¢, : R™ — R, 0 < ¢,,, <1, such that
Ep [0n( X1, Xn)] = 0, Ep[om(Xi1,.. ., X))l — 1 (m — o0).



Note that such a sharp separation is only possible with the variation metric dy but not
with the Mallows metric d;. Some of our results are in terms of the Mallows metric d5.
However, with regard to Facts 1.2 and 1.3 we will also use the stronger formulation in
terms of the variation metric dy.

3 Closure for MA processes

We consider first the Mallows dy closure for MA processes, i.e., we consider sequences as
defined in (2.1). Without loss of generality we can scale the innovations and assume:

(A.MA): For every n € IN, (&4, )tez is an i.i.d. sequence with
Elern] = 0, Blega|® = 1.

Under the assumption (A.MA) and assuming that (Xy,,):cz converges in the dy metric,
the behavior of the coefficients (;,,);en, is determined in the following way,

E|X..,)? = Zlﬁin < oo and lim B|X,,* = lim Zlbin < 00. (3.1)
J=0 7=0

The following result describes the MA closure.

Theorem 3.1 The closure of MA processes with respect to the Mallows metric dy is char-
acterized as follows.

(i) Consider a sequence of MA processes as defined in (2.1) converging in the dy metric,
satisfying (A.MA) and one of the following:

(A1): limy, e d(;)(gtm,gt) = 0, where (¢ )iem s an i.i.d. sequence with E[e¢] = 0.

(A2): lim,,_.., max;>o [¢¥j;,| = 0.

Then, the dy limit of such a sequence is in {51 @ 92} U {51 @ S3}.

(ii) Every element of {S1 & S2} U {51 & Ss} can be obtained as a dy limit of a sequence
of MA processes as defined in (2.1), satisfying (A.MA) and (A1) or (A2).

Remark 3.1: Assumptions (Al) and (A2) are not exclusive in that both of them can be
true.

The proof of Theorem 3.1 is given in section 5.1. It will reveal a more precise char-
acterization of the Mallows dy limits. To give the detailed characterization we take as
a starting point the formula (3.1). We then know that for every j € Ny, the sequence
{¥jn }nen, is bounded. Thus, by the Theorem of Bolzano and Weierstrass, there exists a
subsequence {nk(]‘)}k(j)eN C IN, possibly depending on j, such that

¢j7nk(]) — 1 (k — o0),

for some ;.
Now by a ‘diagonal argument’ we can find a ‘universal” subsequence {nj}ren € IN, not
depending on j, such that

Vjny, — V5 (k— 00), j € No.



In the sequel we assume without loss of generality that
by — by (n— ), j € N, (3.2)

By Fatou’s Lemma we know that
o0 o0
. 2 2
lim Yot > Wl
=0 =0

We will see that the characterization of the Mallows d5 limits will depend on whether one
has equality or not in the above expression and whether assumption (A1) and/or (A2)
hold in Theorem 3.1.

The next result describes the possible Mallows dy limits, i.e., the processes (X¢)ez
which arise as a limit with respect to the ds metric of sequences of MA processes as defined
in (2.1).

Theorem 3.2 Assume that the sequence of MA processes as defined in (2.1) converges
in the dy metric and satisfies (A.MA) and (3.2). Denote by (A1) and (A2) the same
conditions as in Theorem 3.1.

Then:

(i) If (A1) holds and lim,,_.o Y520 ¥%,, = Y32 ¥3, the Mallows dy limit is in Ss.

(ii) If (A1) holds and lim,, .., > 72, zbzm >0 zb]z, the Mallows dy limit is in 51 @ S5.
(7i1) If (A2) holds, then the Mallows dy limit is in S1 & Ss.

(v) If (A1) and (A2) hold, then the Mallows dy limit is in Sy.

Remark 3.2: For assertion (i) it is sufficient to assume only e, = ¢, where (e¢)¢ez is an
i.i.d. sequence with E[¢;] = 0, and lim, . 3272, zbzm =220 zb]z, these two assumptions
imply that E|e;|? = 1. This can be seen in the proof of assertion (i) in section 5.1, which

yields under these assumptions the dz limit X; = > 272, ¢je¢—;. Thus by formula (3.1) we

conclude that d(zl)(etm,gt) —0(n — o).
Remark 3.3: It is impossible to get a Mallows ds limit which is in 55 @ 9.

The proof of Theorem 3.2 is given in section 5.1. Example 1.1 describes a sequence of
MA processes with a dy limit in S3.

This example can also be modified such that sequences of MA processes converge in
the variation metric to a dy limit in S3. This corresponds to the following Theorem,
describing that we can never distinguish perfectly between stationary processes and some
finite moving average processes.

Theorem 3.3 The MA closure with respect to the variation metric dy has the following
features.

(i) Let (&)iem be any stationary process. Assume that the distributions of (&1,...6m)
have densities with respect to the Lebesque measure for all m € IN.
Then, there exists a process (X;)iem € 93, which is a dy limit of a sequence of MA
processes satisfying (A.MA) and (A2), such that

P[X, =& for allt € 7Z|(&)iem] > exp(—1) > 0.36 almost surely.

10



(ii) There exist ergodic, stationary processes whose finite dimensional distributions have
densities with respect to the Lebesgue measure and which are not representable as dy
limits of a sequence of MA processes, satisfying (A.MA).

The proof of Theorem 3.3 (i) is given in section 5.1. For proving assertion (ii) it is
sufficient to give an example.

Example 3.1 Consider the stationary binary Markov chain (X,);exz, given P[X; = 0] =
]P[Xl = 1] = 1/2, ]P[Xl = 0|X0 = 0] = ]P[Xl = 0|X0 = 1] =7, 0 <7< 1/2 Then
(X¢)iem is ergodic. Moreover, the probability distribution of X} is not decomposable, since
the convolution of two non-degenerate distributions would place mass on at least three
points, whereas X is only binary. Hence, (X;);ez can not be approximated in the dy
metric by any MA process, saying that (X;)icz can not be an element of the MA closure.

Example 3.2 Consider the Gaussian AR(1) process
Yi = Qb)/t—l + & (t € Z)v

where 0 < |¢| < 1 and (&;);e an i.i.d sequence, ¢, ~ N(0,1 — ¢?). The process (V;)icz
is stationary and strong-mixing, cf. Gorodetskii (1977).

Let F(z) = ®(x) — x¢(z) be the c.d.f. with density f(z) = 2%p(z), where ®(.) and ¢(.)
denote the c.d.f. and density of the standard normal distribution. This distribution is
indecomposable, cf. Linnik (1964, Ch. 5.2). Construct, the process

Xi= Flod(Y)) (t € 7).

The one-dimensional marginal distribution is X; ~ F, being indecomposable. Thus, as
in Example 3.1, (X;)tcz can not be approximated in the dy metric by any MA process.
Moreover, (X¢)i ez is a stationary, strong-mixing, and hence ergodic process whose finite
dimensional marginal distributions have densities with respect to the Lebesgue measure,
as required in Theorem 3.3 (ii).

There are probably many ergodic, stationary processes, which are not elements of the
MA closure. A possible candidate would be the bilinear process, given by

Xi= 04X, 1 +04X;_4641 + &4 (t € Z),

where (¢4)iez 1.i.d ~ N(0,1), cf. Subba Rao and Gabr (1984, Figure 3.10).
This process is stationary and ergodic, cf. Akamanam et al. (1986). It is also immediate
that the process is non-Gaussian. As argued in Subba Rao and Gabr (1984, Table 3.2
and Figure 3.3), this bilinear process is not representable as a moving average process.
However, the MA closure also contains the class 53 and it seems difficult to prove rigorously
that the process is not an element of this class 9.

It is possible to find a sub-set of MA processes which is closed with respect to the dy
and to the dy metric. Let

o0

SMA;g(.),h(.),I(,ﬁ,C = { (Xt)tEZ; Xt = Z ¢j€t—j7 (&f)te% an i.i.d. sequence,
=0

er ~ f(a)dz, f € Foiyne)i and (¥5)jen, € Mp o},

11



where
Fapow =1 Firzo [ faye=1, [ afwde =0, [ apae < K,
/OO f(2) = flz + )|de < 6 for all |e] < g(8),

— 00

(/_;4 -I—/AOO)|f(x)|dac <6 forall A> h(6) (8> 0)},

with g : RT — R*, g /', ¢(0)=0,h:RT — RT, A\, h(0) = cc and

Mg = {())jene: 33707 < C.

=0
Theorem 3.4 Assume that § > 0, K < 0o and C' < co. Then the set Snyag(),1().K,8,C

18 closed under the dy and under the dy metric.

Remark 3.4: Under the additional assumption that 8 > 3 and }°72, Y20 # 0 for |2 < 1
for every (v);en, € Mg c, the processes in SM As9(.),h(.),K,5,c are strong mixing and hence
ergodic. This follows from the result in Gorodetskii (1977).

The proof of Theorem 3.4 is given in section 5.1.

4 Closure for causal AR processes

We consider now sequences of stationary, causal AR processes, as defined in (2.2). We
always assume

(A.AR): For every n € N, (¢4, )1ez is an i.i.d. sequence with E[es,,] = 0, Eles,|? < oo.

Causal, or minimum phase, means that the autoregressive transfer function

¢, (2)=1- iqﬁjmzj #0for |2 <1(2€C)and f: || < 00. (4.1)

i=1 i=1

The formula (4.1) implies that X, can be expressed as a function of the present and past

of the innovation process €., €¢—1;n,..., namely
o0
Xtm = Z%‘;ngt—jm (t € Z), (4-2)
=0

where the coefficients (%’;n)}io are given by the inverse of the AR polynomial, the so-called
MA transfer function

1/®,(2) = V,(2) = ilbjmzj, |z| < 1.
7=0

Thus by (4.2), we see that the stationary, causal AR processes given by (2.2), satisfying
(4.1) can always be represented as stationary MA processes.

We focus first on the Mallows dy closure. The characterization of the ds closure for such
AR processes can now be derived via the characterization of the MA closure. However,

12



we cannot force the innovation variances to be equal to one by a simple standardization
as in the MA case. Moreover, as described below, for sequences of AR processes which
converge in the d; metric, the innovations are also forced to converge in the dy metric,
compare also with assumption (A1) in Theorem 3.1.

Lemma 4.1 Assume that the sequence of AR processes as defined in (2.2) satisfies (A.AR),
converges in the dy metric and ey, = €4 (n — 00), where (&¢)iex denotes an i.i.d. se-
quence with Ele;] = 0, Blgy|* < 0.

Then, also

Elegn]® — Elee* (n — o),

i.e., d(zl)(etm,gt) —0(n— o).

Proof: Denote by Uy, = Z?’;l ®jinXt—jn. By the weak convergence of Xy, = X; (n —
o0) and of €4, = ¢ (n — 00) we know that Uy, = U; = Xy — ¢ (n — o0), where Uy is
independent from e;. Thus,

E|X,> = E|U,| +Ele|?,
and therefore
E|X¢|* = liminfE|X,.,|* > lim inf E|Uy,,|* 4 lim infE|e;.,|* > B|U;]* + Ele,|* = E|.X,|?,

where the inequality cannot be strict. Hence equality holds in the above expression which
completes the proof. a

The question of interest is then if the AR closure is smaller than the MA closure. The
answer is yes although type S5 can still arise, as described by the next theorem.

Theorem 4.1 Assume that the sequence of AR processes as defined in (2.2) converges in

the dy metric, satisfies (A.AR), (4.1) and one of the following:
(A3): et = €4 (N — 00), where (e¢)iey is an i.i.d. sequence with E[e;] = 0.

(A4): sup,en SUpP ;>0 |10, < 00, where > %0 zbjmzj =1/®,.(2) (|z] < 1).

Then, the dy limit of such a sequence of AR processes is in {51 @ 52} U {51 & S3}.

The proof of Theorem 4.1 is given in section 5.2. Also, the precise characterization of
the Mallows ds limits is similar to the one in Theorem 3.2. We know from Lemma 4.1 that
€t = €t (n — o0) implies 02 = Eley,|* — 0% = Eles]? < 0o (n — o0). We distinguish
between two cases,

(I) 0 < 0% < 00,
(L) 02 = 0, i.e., the degenerate case ¢; = 0 for all ¢ € Z.
By assumption of Mallows dy convergence we know that

o0
E[X;n* =Y 47,00 — 2 (n— ), 0<c? < oo,
=0

13



(The case c? = 0 is degenerate and uninteresting, the dy limit X; = 0 is in Sy with ;=10
for all 7).

Thus, we consider the two cases

(I) SUPpeN Z(]).;O sz,n < o0,

(IT) sup,en 2520 zbzm = 0.

In case (I), we then know that for every j € INg, the sequence {%;.,}nen is bounded.
Thus, by the same argument as for formula (3.2),

Vi — ¥j (n — 00), j € No.

And again by Fatou’s Lemma we know that
o0 o0
. 2 2
lim e >t
=0 =0

In case (IT) the sum Y %2, 4%, is unbounded and no direct analysis as in case (I) applies.

Theorem 4.2 Assume that the sequence of AR processes as defined in (2.2) converges in
the dy metric, satisfies (A.AR) and (4.1). Denote by (A3) and (A4) the same conditions
as in Theorem 4.1.

Then:

(i) If (A3) holds, lim, o Elegnl® = 0 > 0 and lim, oo 3520 %%, = Y52, 07, the
Mallows dy limit is in S5.

(it) If (A3) holds, limy_.coBley,|* = 0% > 0 and lim, .o Y520 ¥%, > 32,97, the
Mallows dy limit is in 51 @ S5.

i) If (A4) holds, ey, = 0,7 (t € W) with (Zy)iey i.i.d., B[Z] = 0, E|ZJ* = 1 and
()f(4 ’ ; S ’ 9

lim,_oo 0p =0, o, >0, the Mallows dy limit is in 5.
(iv) If (A4) holds and lim,,— o Eles.,|* = 0, the Mallows dy limit is in S1 & S3.

The proof of Theorem 4.2 is given in section 5.2. To show that the statement (iv) does
include non-zero elements of S5 processes, we now give an example.

Example 4.1 Consider the sequence of AR(1) processes
Xt;n = ¢nXt—1;n + €tm (t & Z)7

where 0 < ¢, < 1, ¢, — 1 (n — 00) and (et )iez ii.d. with Pley, = 0] = ¢2,
Ples, = +1] = (1- 62)/2

Proposition 4.1 In Frample 4.1, (X )iem converges in the dy metric to a process
(X¢)iem € Ss which has constant sample paths, i.e., X, = X, for all t,s € 7.

The proof of Proposition 4.1 is given in section 5.2. It is a difficult task to construct
sequences of AR processes with dy limits in S5 having non-constant sample paths. It is
an open question to us if more complicated 53 processes arise as dy limits of AR processes

satisfying (A.AR) and (4.1).
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In case (I), the condition 0% > 0 can be interpreted that the innovation variance E|e;., |
is of the same order as the process variance E|X;,,|?. Then, only assertions (i) and (ii) of
Theorem 4.2 apply and type S3 does not arise. In that respect the AR closure is smaller
and easier to understand than the MA closure.

Under additional assumptions we also can sharpen Theorem 4.1 for the case with
non-vanishing innovation variance as n — oo. Denote by

SARg()h().K,B.C = { (Xi)iem; Xi = Z &; Xi—; + 1, (e¢)tem an ii.d. sequence,
i=1

er ~ f(@)dz, f € Fyryn)x and (¢))jen € Ag o},

where Fy) 1),k is defined as for Syy4.5(),(.),K,5,c in section 3 and

Asc = {(¢5)jens D 57195l < Cand 1= ;27 # 0 for |2 < 1}

J=1 J=1

Theorem 4.3 Assume that 8 > 1, K < oo and ' < c.
Then, the set Spp.y(.)n(.).k,5,0 5 closed under the dy and under the dy metric. Moreover,
processes in S AR.(.).h(.).K,3,c are strong-mizing and hence ergodic.

The proof of Theorem 4.3 is given in section 5.2.
One can also ask about the closure for ARMA processes. Most elegantly we represent
sequences of ARMA processes of order (0o, o0) by

¢,.(B)X, = 0,(B)e,,

where @,,(z) = 1= Y22, ¢j:n27, On(2) = Y2002’ (|2] < 1), B the back-shift operator,
X = (Xtm)tem and €, = (€40 )tez an ii.d. sequence with Eles,] = 0, Eles,|? < oc.

If (4.1) holds for the autoregressive transfer function @, and 3772 [6;;.| < oo, we can
represent such ARMA processes as Xy, = Z?’;O Vjn€t—jin, where W, (2) = Z?’;O P! =

0,(2)/P,.(2).

Then, under either the condition (A3) for the innovations {(&4, )tez tneN, requiring addi-

tionally that lim,,_ . d(;)(gtm, ¢¢) = 0, or under condition (A4) for the variables (%;.,);enN,
as defined above, the dy limits of such sequences of ARMA processes are in {57 @ 53} U
{51 D 95}.

5 Proofs
Lemma 5.1 Let (&)iem be a stationary process with E[&] = 0.

(i) There exists a sequence of stationary, ergodic processes {(5§T))teZ}T€N with ]E[fy)] =
0 for every r € IN, such that

lim d((fng))tEZv (ft)teZ) = 0, d= d2 or dv.

T—00
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(ii) If the m-dimensional distributions of (&1, ...,&,) have densities with respect to the
Lebesgue measure for all m € IN, there exists a sequence of stationary, ergodic pro-

cesses {(5§T))teZ}TeN with m-dimensional distributions of (fy), .. .,57(7;)) having den-
sities with respect to the Lebesque measure for all m € N and ]E[fy)] = 0 for every
r € N, such that

lim d((fng))tEZv (ft)teZ) = 0, d= d2 or dv.

T—00

(iii) If the process (& )iem is Gaussian, there exists a sequence of stationary, ergodic

Gaussian processes {(fy))tez}rem such that

lim d((fng))tEZv (ft)teZ) = 0, d= d2 or dv.

T—00

Proof: The statements (i) and (ii) follow by the technique of Durrett (1991, Ch. 6,
Ex. 1.9 and Ex. 2.10).

Statement (iii) is rather standard: the spectral measure F(.) of the Gaussian pro-
cess (& )iex can be approximated by a sequence of spectral measures {F(T)(.)}TGN (in
the sense of complete convergence), having continuous spectral demsities {f)(.)},en.
These densities f(")(.) can be approximated by polynomials P%7)(.) of order k,, corre-
sponding to Gaussian MA processes of order k., being now the approximating sequences
{(fikr))teZ}TeN. For details, see Grenander and Szegd (1984, Ch. 1.9 and Ch. 1.12). O

5.1 Proofs of results in section 3

Proof of Theorem 3.1 (ii)

Step 1: Proof that 51 & 99 is realizable with dy limits of MA sequences.

Let (Wi & Yi)iem € 516 52 with (Wy)em € S1, (Yi)iem € S2. By Lemma 5.1 (iii) there
exists a sequence of stationary, ergodic Gaussian processes {(Wy, )iez}ren, such that

lim da (Wi )rem: (Wi)iez) = 0. (5.1)

T—00

We show now that (Wy, & Y;)iez can be approximated by a sequence of MA processes.
Assume that Y; = 3272, e, ; with Ele;|* = 1. Let M,, — oo (n — oo) and define

M, o0
Ximr = D Vicmi+ D Uimrleis (5.2)
=0

]:Mn‘l‘l

where ¢j,n;r = Mn_l/ij;r (Mn‘l'l <j< 2Mn) and ¢j,n;r =0 (] > 2Mn‘|’1)7 and (wt;r)tEZ

is a fixed realization of the process (Wi, )iez.
Clearly, for 6 > 0 there exists an ny; = nq(6) such that

My,

do (D i iem, Yohiem) < 6 for all n > ny. (5.3)

i=0
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Moreover, for § > 0 there exists an ny, = ny(r,¢) such that

dao(( Y. Wjnpei—ihiems (Wi hiem) < 6 for all m > ng, (¢ € No). (5.4)
j:Mn‘l‘C‘l‘l

(The constant ny, might depend also on ¢).
To show (5.4) we first verify the Lindeberg condition; we first argue for the one-dimensional
marginal distribution. Note that for v > 0 there exists an ng, = ns(r,7) such that

max ol <~y forallm>n
jZMn+1|¢],n,T|_7 = H3,ry

since (wy;)iez 1s a realization of the stationary, ergodic Gaussian process (W, )iz and
IP[maxas, +1<j<2M, |[Wig| > MQLM] =o(1) (n — ), by the behavior of the Gaussian tail.

Hence, for ¢ > 0, x > 0 there exists an n4, = n4(r, , x) such that

Z ijz,n;r]E[gz?1[|6t|>ﬁ/|¢],n;r|]] < C for all n > 2R (55)
]:Mn‘l‘l

Here we used that 352 ,, ., ¢? . is bounded, see argumentation for (5.6).

J 1T

Next, we verify that for ¢ > 0 there exists ns, = ns(r, () such that

| Wi kg — Cov(Woy, Wiy )| < C for all n > ns, (k € No). (5.6)
j:Mn‘l‘C‘l‘l

(The constant ns, might depend on ¢ and k). This states the convergence to the proper
covariances.

Formula (5.6) follows immediately by the definition of 1; .., and the ergodicity of (W4, )iez.
Thus, by (5.5) and (5.6) we have shown (5.4) for the one-dimensional marginals. The more
general statement in (5.4) follows analogously by the Cramér-Wold device.

For any finite dimensional set t; < ... < t,,, m € IN, we choose ¢ = t,, — t; such that
Z]‘]\i% Vjeq—j and 320200 4y 4 1 Vi€, —j are independent for all 4,k € {1,...,m}.
Moreover, Var(zj]\i’ﬂz’_’lﬁl_tl Yinpei—;) = op(l) (n — 00), where the op-term depends on
r. By splitting up

M, Mp+tm—t1 o0
Xt;n,r = Zlbjgt—j + Z ¢j,n;r5t—j + Z ij,n;rgt—jv (57)
j:O ]:Mn+1 Mn+tm_t1+1

we see that the middle part Zﬁ’ﬂz’j_;tl ¥V; nr€e—; plays a negligible role as n — oo and

we can work with the remaining independent pieces. Using this independence and (5.3)
and (5.4) we have: for § > 0 there exists an ng, = ng(r,¢) such that
d2((Xt;n,T)t€Z7 (Wt;r + )/t)tEZ) S 6 for all n Z ne,r,

with (We, )tem and (Yi)iez independent for every r € IN.
Restating,

Tim_da(Xeye ez (Wer @ Yiez) = 0 (r € N). (5.8)
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Thus by (5.1) and (5.8), there exists a subsequence {n,},en C IN such that

lim do(( Xty )tez, (Wi @ Yi)iem) = 0.

n—oo

Since (X¢p, r)tez is an MA process, satisfying (A.MA) and (Al) we complete the proof
of step 1.

Step 2: Proof that S & 93 is realizable with dy limits of MA processes.

Let (Xo)iem = (Wi Yi)ez € 51653 with (Wi)iez € St and (Y = 3252 YN &ui ez €
Ss. Approximate (Wy)iezm by (Wi )iez as in (5.1). Moreover, approximate (Y;)tez by

Yikw = szt,m’ ftw e }ueN stationary, ergodic as in Lemma 5.1(1) (k,u € IN),
=1 7=1

lim dao((6) ems (Sniheen) = 0 (.5 € ).
Then, by using > 72 /\ing;i < 00 we get in a straightforward way,

lim lim do((Yekw)tem, (Ye)tem) = 0. (5.9)

U—00 k—00

Denote by (Xt ku)tez = (Wi + Yeku)tez. Then, by (5.1) and (5.9),

lim lim lm do(( Xy ku)tez, (Xe)tem) = 0. (5.10)

U—O0 koo T—00

We show now that (X¢,, k. )tez can be approximated by

X}TM wakuUt im (t €T, 1k, ue N), (5.11)

7=1

where for every n € N, (U )tez is an ii.d. sequence, independent from (fig?j)tez for
all i,j,u =1,2,... with P[Uy, = 1] = 1 = P[Upy, = 0] = M/n with A = 1+ Y5 A; (if
(Wi )tem = 0, then A = Zle Ai)s and (& k) jez is a (fixed) realization of a process with
distribution Fg on (R%, B), given by dFg(x) = A N(dFw, (x)+ Sk /\idﬂ(u)(x)), x € RE
where Fyy, and F»(u) are the distributions of (W, )iez and (5;:;7)1)156Z7 respectively.

(n)

Note that the random quantities in the definition of Xt ke

Then,

are now only the Uy,’s.

X+ X ) & Koo Xapini) (0= 00),
forall {4 < ...<t, € Z, for all m € IN. (5.12)

To show (5.12) we first argue for the case m = 1. Denote by ¢r(s) = Elexp(isUy.,)],
s € R. Then, we obtain for any s € R,

c,o(”)(s) ]E[ewp(stt ok u H 5]77, kuS) H 1 + A/n( exp(wf] k) — 1))
7=1 7=1
— exp (ANE[exp(iséiypu)] — 1)) = Eleap(isXiy pw)] (n — 00).
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For the convergence to the limit with respect to n we use the ergodicity of (éj;r,k,u)jeZ
which implies n~! >t exp(isfjmk’u) — ]E[ewp(isfl;7,7k7u)] (n — 00); note that él;r,k,u is
now again a random variable. Moreover, the definition of F¢ has justified the last equality
in the formula above. This proves (5.12) for m = 1.

For m > 1 one argues similarly, for example for m = 2:

n—1

(X X Y = S Eras Gitamtiinin) Uy —jin + 0p(1) (n = 00) (11 < 1),
=1

and one uses now characteristic functions in IRZ.

On the other hand,

n n
]E|Xt(;f7)k7u|2 = ]E|U1;n|2 Z fz;r,k,u = An_l Z fz;r,k,u
i=1

=1
— B[l = E| X il (0 — o). (5.13)

Therefore, by (5.12) and (5.13),

lim do(X Jeems (Xihen) = 0. (5.14)
Note that ]E[Xt(:f)k . 7 0, but the formula (5.14) also holds for the mean corrected process
Xt(z)ku =20 fj;7,7k7u(Ut_j;n — A/n). Then, (f(t(:f)k ez is an MA process of order n,

satisfying (A.MA) and (7A2), since IP[max; <<y, |§j;r,k,u| > n3/4] — 0 by the tail behavior,
i.e., second moments of &,k .

By (5.10) and (5.14),

lim lim lim lim dy((X7), ez, (Xo)iez) = 0.

n—00 U—00 k—oo 7—00

Thus, there exist subsequences {n, },eny C N, {u, },en € N, {£,},en € IN such that

lim dg((Xt(;;j]ghur)teﬁv (Xt)iem) = 0.

T—00

Therefore, {(f(f; ku, JIEZ}reN SeTves as an approximating sequence of MA processes,
which completes the proof for step 2.
By steps 1-2, the proof of Theorem 3.1 (ii) is complete.

Clearly, Theorem 3.2 implies Theorem 3.1 (i). O
Proof of Theorem 3.2

Proof of assertion (i):
We first argue for the one dimensional marginal X, = Z?’;O Vimei—jy for a fixed t € ZZ.
Let 6 > 0. Then there exists k = k(¢) such that

i $7 < 62, (5.15)

=k+1
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By (3.2) and d(;)(gtm,gt) — 0 (n — 00), there exists an ny = nq(6) such that

k
Z%mgt vaZ%gt i) < (E Z VjinEi—jm — Qﬁjgt—j)ﬁ)l/z

k k
Z Pion — 1))+ » OV Elery — )2 <6 for n > ny. (5.16)

i=0

(Here we have used the Minkowski and Cauchy-Schwarz inequality).
Furthermore, again by the Cauchy-Schwarz inequality,

Zm ],Zm] ) < ( Z PO <8,

7=k+1
o0
d2(2 ¢j;n5t—j;nvz¢j;n5t—j;n) <( Z ¢2‘;n)1/2
7=0 7=0 7=k+1

For the second inequality we bound in addition, by using Y 524(4%,, — ¢F) — 0 (n — o0):
there exists a ny = ny(d) such that

Zlﬂm_ Z¢2+|Z |<(26) for all n > ns.

7=k+1 7=k+1 7=k+1
Thus,

k 0
2(2 ¢j;n5t—j;nvz¢j;n5t—j;n) < 26 for all n > ny.

i=0 i=0

By setting ng = no(6) = maz(ny, ny) we therefore obtain with (5.16) and its subsequent
formulas,

2D VjmEimjins D bjea—j) < 46 for all n > no,

i=0 i=0

implying

lim (X, > jery) = 0 (t € 7).

n—oo ;
J=0
This proves assertion (i) for the one dimensional marginal case. The multidimensional

case (X¢, s .- .r Xt,m) With m > 1 follows by the same argument and the Cramér-Wold
device and hence

lim do((Xtn)tez, Z%gt itez) = 0.

n—0o0
7=0

Proof of assertion (ii):
We argue first for the one dimensional marginal case. Let {é,,}nen be a monotonely
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decreasing sequence with lim,, ., 6,, = 0. Let k., = k(6,,,) be as in (5.15). Then, there
exists 19, = n1(6,,) and a constant M, > k,, such that

< > .
]>I]{14ax+ |10 < 6 for m > mq 4. (5.17)

To show formula (5.17) we assume the opposite. There exists 6,, > 0 such that for all
n1,m € N and for all M,,, > k,, = k(6,,)

max > 8, for some n > n
53 M1 |¢]n| 1,m-

This implies that for some n > ny 5,
|1h.n] > 6y, for infinitely many j > k,, + 1.

But this implies 3772, zb]?’n = oo for some n > nq ,, (for all ny , € IN), which is a contra-
diction to lim,— oo B| X0 |? = lim,— oo > %0 zbzm < 0.
As in (5.16) and its subsequent formula, there exists an ng ,, = no(My,, 6,,) with

M, My,
da(D> " VjinEimjins Y Yjct—j) < b for all m > ng

7=0 7=0
M 00

do(Y " bjerjn Y Wierj) < 6
7=0 7=0

Therefore,

My, 00
da (Y jinEimjins D ¥jct—j) < 26y, for all n > ng 4.

i=0 i=0

For all 6 > 0 there exists an my = m1(é) with é,,, < /2 and hence

M 00
dQ(Z %‘;ngt—j;nvz ier—;) < 6, for all m > my, n > ng (5.18)

i=0 i=0

Let us consider now the tail part Z(]?.;Mm+1 Ym€t—jm. Denote by (Wi)iez a stationary
Gaussian process with E[W;] = 0 and Cov(Wy, Wiik) = lim,, o0 > e Mt1 Vi it ikl (k €

ZZ). Hence, for the d(21) convergence of 372 /1 Vet i to Wy, it will be sufficient to
verify the Lindeberg condition.

Forall ¢ > 0, for all K > 0 there exists an my = ma(x, () and there exists n3 ,, = ns(m, &, ()
such that

Z VRl Ll ynl> /10,0l < Z U l€8n et ml> 5/ masss at 1 [l
] =Mm+1 ] =Mm+1
< Z zb etn letm|>r/6m]] < € for all m > ma, n > n3 m,
J=Mm+1
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here we have used the bound in (5.17) and the fact that d(;)(gtm,gt) — 0 (n — o0). Thus
the Lindeberg condition holds. We now have: for all § > 0 there exists an ms = mgz(§)
and an ny ., = n4(m,d) such that

da(( Z Vi€t )tet, Wiliem) < 6 for all m > ma, n > ng . (5.19)
]:Mm‘l‘l

Note that mq and mg in (5.18) and (5.19) are functions of ¢ > 0. Thus, by defining
mo = mo(6) = max{mq,ms} and for ng = ng(é) = max{ng m,, 74,m,} we get by (5.18)
and (5.19): for n > ng

My

Ao D imEemiins 3 ici—) <6,
J=0 =0

d2( Z ¢j;n5t—j;nth) < 0.
j:MmO +1

By independence (for fixed ) of Z],]\i’go Gjinci—jm and 3726 1y ¥jinEi—jin and hence of
Y2y and Wy we get

o0

nh_{go dgl)(Xt;nvz;)¢j5t—j ® Wt) =0 (t < Z),
j=

(here, the & operation is for real valued random variables).
This completes the proof of assertion (ii) for the one dimensional case.
Similarly as in (5.7) we can argue that the pieces (Z]]\irgo YjnEt—jim Jtem and
(Z?’;Mmo 11 V;n€t—jin )tez become independent in the limit. By the same arguments as in
the one dimensional case and using the Cramér-Wold device we then see that the Mallows
dy limit of {( Xt )tez }nen is in 51 & 52.
Proof of assertion (iii):
We first characterize the Mallows dy limit (X¢)iez of the sequence {( Xt )iem;n € IN}.
Consider any finite dimensional vector

o0
(Xtvmr o o> Xein) = 2 (Ljsns Cjttomtiims -+ s Ciktmetim) €= jim + 0p(1).
=0

This is essentially a vector sum of independent variables, which are by assumption (A2)
u.a.n. (uniformly asymptotically negligible). By Theorem 2 of Takano (1956) the charac-
teristic function ¢x(.) of the limiting distribution of (X4, .., ..., X¢,,.n) is thus character-
ized by the Khintchine-Lévy representation ¢x(s) = exp(¢x(s)) (s € R™) with

Ux(s) = —s'Ys/2 + /Rm(eacp(is’x) —1—is'z) H;HZdK(x), seR™, (5.20)

where K is a measure with K(IR™) < oo, K({0}) = 0 and ¥ a non-negative definite m x m
matrix.
The part —s’¥s/2 in the ¢ x(.) function corresponds to a Gaussian process (Wy)iez with
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E[W;] = 0 and which satisfies Cov(W(¢;), W(t;)) = X;; (¢, = 1,...,m). Moreover, this
Gaussian part is independent from the rest, given by the measure K, since it is an additive
term in the ¥ x(.) function.

We will show now that we can approximate the measure K, or the non-Gaussian part
Jralexp(is'e) — 1 — is’x)WdK(w), by a quantity corresponding to a process in S3. De-
compose the non-Gaussian part of ¥ x(s) as

Z/ (exp(is'z) —1 - is’w)H szA( ), s € RY,
r=1v"r

where I; = R™\ [-1,1]", I, = [-(r — )7L (r = D)7\ [=r=L 771 r = 2.3, ..
Note that the sets Iy, I, ... are disjoint which will yield the independence of the Poisson
variables Ny, Ng,...in the S3-representation.

Consider

o N;
(Yi)iezm € 53, Yy = szt;i,j
=1 7=1

where &, i1 ~ Fi with \idFi(z) = dK (2)/||2||*1er]. ¢ € N and Ny, N, ... indepen-
dent, N; ~ Poisson();), A; = [ dK(z)/||=|.

Then a straightforward calculation for the characteristic function

ey (s) =Elexp(is'(Yy,,...,Y:,))] (s € R™) yields,
H exp(A - 1)),

where ¢, (s) =E[exp(is' (&, r1s- - &tnrn)] (r € IN).
Thus, in the Khintchine-Lévy representation

Py (s) = log(ey(s Z Ar / exp(is'z) — 1 —is'z)dF,(v)

Z_:/ (caplis's) =1 = is'r) g szlx( v) = dx(s). (5.21)

Putting the pieces together, we consider the process
(Wi B Yi)iem € 51D Ss

as a representation of (X¢)icz.
Finally by (5.20),

nh_{{)lo do((Xt;n)iem, (Wi © Yy)iez) = 0.

This completes the proof for assertion (iii).
For assertion (iv), observe that by (A2), ¢, = 0 for all j € INy. Thus, statement (iv)
follows from (ii) and (iii). ]

Proof of Theorem 3.3 (i)
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Consider the process (X¢)ez in S5, where

N
Xy =) &, (te),
J=1
and (&i1)tez = (&)tems (E42)tem, - . - are independent copies of (& )iem, N ~ Poisson(1).
By Lemma 5.1(ii), approximate (& )iz by a sequence of ergodic processes {(5§T))t€Z}TeN,
with densities for all marginal distributions, such that

lim dv (67 )iezs (E)iez) = 0 (5.22)

T—00

and ]E[fy)] = 0 for every r € IN. Without loss of generality we assume ]E|€§T)|2 < ooj; this
can be achieved by an additional truncation argument in the proof of Lemma 5.1(ii).
Then, consider the process

N
Xt;r = nyj) (t € Z)v

i=1

where (fi;q))te% (fyz))te% ... are independent copies of (@(”)te% (r e IN).
Then, by straightforward arguments and using (5.22),

Tim dy((Xiy ez (Xoiez) = 0. (5.23)

Consider now the sequence of MA processes

X0 =N"eur L (teZ, reN),

t—jim,r
i=1

where (f;T))jeZ is now a fixed realization of the stationary, ergodic, mean zero process
appearing in formula (5.22), and U, , = Uyn + Zinr, (Usn)ier an idid.  sequence
with P[Us, = 1] = 1 = P[Us, = 0] = n7! and (Zin,)tez an id.d. sequence with
Ziye ~ N(O, Uzw), the processes being independent from (X4, );ez and from each other.
This is similar to the processes in Example 1.1. By choosing U?w, — 0 (n — o) appro-

priately, we will show that (Xt(;f)*)tez converges in the variation metric to (X¢, )iez. We
will consider convergence for the one dimensional marginal distribution. Since 5§” has a
density with respect to the Lebesgue measure (see Lemma 5.1(ii)), also Xy, has a density
fr(.) for the corresponding c.d.f. F,.(.).

We write

Xt(j;)* = X(n) + Wt;n,ﬂ

tr

Xt(j;) = Z 7](‘T)Ut—j;n7 Wt;n,r = Zéj(‘T)Zt—j;n,Tv
i=1 i=1
so that Wy, ~ N(0,02,), v}, =02, 50, (5}0))2 ~ U%7Tn]E|£Y)|2 (n — o0).
Denoting the c.d.f. of Xt(.n by F,..(.), Xt(;f)* has the continuous density

3T ’

Fipw = [ vkl

e

u—z

YAF, - (2).

T
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We can bound

dy(X1", Xey) = 1/2| X0 = Xollv = 1/2 /R £ (w) = fo(u)|du. (5.24)

Let f;J(u) = [rvmre(X=2) fo(2)dz. Clearly, as v}, — 0 (n — o),

Tim |F5 () — fo(w)] = 0 (u€ R). (5.25)
Moreover, rewrite by partial integration and change of variables,
o (u) = oo (u)] = |/R(Fmo(u — o) — Fy(u — v ) ot (v)do)

1w = Folleri} [ 10)lav.

IN

The distribution £}, , of X(n) converges weakly to the distribution £, of X;,, this follows

tr
from the proof of formula (5.12). Since the distribution F, is absolutely continuous, we
get by Polya’s Theorem || Fy, , — Fy|lsc — 0 (n — o0). By choosing 0 , = || F» — Fy||oc/n
we get v2 . — 0, ||Fo, — Frllovy, — 0 (n — 00) and therefore

lim |7, (u) ~ o, (w) = 0 (u € R). (5.26)

n—oo

By (5.25), (5.26) and Scheffé’s Theorem,

tim [ 1 (0) = f(wldu =0 (7 € ).

n—oo

This, together with (5.24) yields dg/l)(X(n)*,Xt;T) — 0 (n — o0).

tr
For the higher dimensional marginal distributions one can argue similarly. Therefore,

lim dy(XViem, (Xe)iem) = 0 (r € N). (5.27)

n—oo

Note that ]E[Xt(:;f)*] # 0. But since n=' 37, f;T) — 0 a.s (n — o0), the formula (5.27)
holds also for the mean corrected process )N(t(;f)* =3 in f;T)(Ut*_j;n7T —n~1). Also, the
sequence {(Xt(;;)*)teﬁ}n,rel\f satisfies (A.MA) and (A2). By (5.23) and (5.27), there exists
a subsequence {n,},en C IN, such that

lim dv((Xt(;;r)*)te% (Xi)iem) = 0.

T—00

Moreover,
P[X, =& for all t € Z|(&)iem] > PP[N = 1] = exp(—1) > 0.36.

This completes the proof. a

Proof of Theorem 3.4

With respect to the L!-norm, the set Fo(),h(),k is uniformly bounded (as a set of prob-
ability densities) and therefore conditionally compact, ¢f. Dunford and Schwartz (1957,
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Th. 20, Ch. IV.8). In metric spaces, this is equivalent to sequential compactness. We now
show that F,() x(),x is even closed in L' and hence compact. Let {f,},en be a sequence
in Fy(yn), 5 with LY limit f,i.e., lim,—s [g |fu(2)— f(2)|dz = 0. By the L' convergence,
we immediately get

fZO,/Rf(x Vo =1, /|f F(z + ¢)|dz < & for all |¢| < g(5),
—A 00
(/’ +11Nﬂﬂwx§6bNMAzhw)w>0)

Moreover, by Fatou’s Lemma,

n—oo

/ 2 f(z)dz < liminf [ 2?f,(2)dz < K < 0.
R R

Finally, by uniform integrability, due to the bound K < oo for second moments,

/Racf(w)dx =

This shows that f € Fyy ),k Hence Fyy ),k is closed with respect to the L' norm.

Consider a sequence {( Xy, )ieZ }neNs Xizn = 3520 Vjin€t—jin, of processes in Sysa:().1(.),K,3,C
of which a suitable subsequence converges to a dy (or dy) limit (X)icz. The aim is to

show that (Xy)iezm € Shmrasg(),h().K.8,C-
Denote by f, € Fy(), h() K the innovation density, i.e., e, ~ fn(z)dw. Since Fyy () x 18
compact, the L! hmlt [ is again in Fyy p), k> where f is defined by

lim/ | (2 z)|dz =0

(or take a suitable subsequence {ny}ren C IN).
This again implies that

lim d\"(c10.24) = 0 (1 € 7), (5.28)

n—oo

where (&¢)iez is an i.i.d. sequence with ey ~ f(z)dz.
Without loss of generality we denote by ©; = lim,,_.o. 9., Since (¥;.,);en, € Mpa,c (8 >
0) for all n € IN, we get

o0 o0
: 2 _ 2
Jim, 2 Ve = 2, 5
j=0 j=0

We know from Theorem 3.2, see also Remark 3.2, that {(Xt.,,)iez}nen has a dy limit
(X¢)iem, where

X = ilﬁjét_j (te 7). (5.29)

=0
Since sup,eN Y 20 jﬁlb]zm <O, weget 3 2, ]ﬁzb]? < (' and hence

(1j)jen, € Mg c.
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This together with (5.29) and the fact that e; ~ f(z)dz, f € Fy(y ),k implies (X;)iez €
SM As9(.) k(). K,5,C-

From (5.28) and the fact that Ele;|* < K < oo, it follows from the proof of Theorem
3.2, see also Remark 3.2, that (X;)iez as defined in (5.29) is also the weak convergence
limit of {(Xyu)iez}nen. Hence, the closure of Syra.().n() K 8,c With Tespect to weak
convergence on finite dimensional distributions is a subset (not strict) of SM As9(.) k(). K,5,C-
Since the closure of a set with respect to the dy metric is always a subset (not strict)
of the closure of the same set with respect to weak convergence on finite dimensional
distributions, we conclude that the dy closure of Syra.4()n(.),K,5,0 Is  subset (not strict)

of Snra:9(),0().K,8,C- -

5.2 Proofs of results in section 4

Theorem 4.1 follows by Theorem 4.2.

Proof of Theorem 4.2

The proof follows in large parts the proofs in section 5.1. The key is to represent (X, )iez
as an MA process, see formula (4.2). Then assertions (i) and (ii) follow as in the proof of
Theorem 3.2. The cases in assertions (iii) and (iv) have in common that 02 = E|ez,|* — 0
and hence sup,cn 220 zb]z’n = oo. However, by (A4) the sequence of variables ;.,e¢_;.,
is still v.a.n., i.e.,

max o, |, — 0 (n — o0).
7>0

Now, assertion (iv) follows as in the proof of Theorem 3.2, assertion (iii) is a special
case, where Lindeberg’s condition holds, and therefore formula (5.20) consists only of the
Gaussian part —s'Ys/2. This completes the proof of Theorem 4.2. a

Proof of Proposition 4.1
The AR(1) process (X, )tez can be represented as

Xt;n = Z Qb%fit_]‘m (t € Z)
=0

Moreover, E|ey.,|? = 1 — ¢2 so that E|X;,,|? = 1 for all n € N. Next we will show that for
fixed t,

Xt = Xyt (n — 00), with ¢(s) = log(E[exzp(isXy)]) given by

P(s) = /R(exp(isx) — 1 —isx)/2?dK(z), dK(z) = rl_1cp<nydz.  (5.30)

Note that X; cannot be Gaussian since the Khintchine-Lévy measure K(.) does not jump
at zero. Moreover, formula (5.30) does imply d; convergence since E| X,|* = [ dK(2) =1,
which equals lim,,— . E| X;.,|?.

To show (5.30) it is sufficient to prove

LY
K, converges weakly to K, K,(y) = Z/ 2?d ., (), (5.31)
=07

27



where I}, is the distribution of qﬁ%gt_jm.
We consider

/dF]n =(1-¢2) /2215<¢J<l](0<5<1).
Since ¢/ > 6 is equivalent to j < log(6)/log(é,) and —2log(¢,) ~ 1 —¢?% (n — ), we get
/ AF;n() = (1— §2)/2[log(6)log(é)] — —log(6) (n — oo).

By symmetry, the same is true for —1 < ¢ < 0. By the Radon-Nikodym Theorem we then
arrive at

Z ?d ., (v) — 2%z 11[_1<x§1]dx = l_1<a<q)dr (0 — 00).

Therefore (5.31) follows and hence (5.30) holds.

Finally, since ¢, — 1 and e, = op(l) we have Xy, — Xy_1,, = op(1l) and therefore

Xy =Xy forallt e ZZ. a

Proof of Theorem 4.3

Consider a sequence {(X¢ )tez tneN, Xtm = Z?’;l @i Xt—jimtEtn, Of processes in S4R.q(),n(.),K,5,0
of which a suitable subsequence converges to a dy (or dy) limit (X)icz. The aim is to

show that (X¢)iez € Samig(),h(),5,8,0-

We use the representation (4.2) and then get with the formula ;,, = Zi;é Viin @i —kin »
cf. Markushevich (1977, Vol. 1, p.438),

sup Zjﬁ_1|¢jm| < 0. (5.32)
neN’ "4

Without loss of generality, we denote by ¢; = lim,,—.o ¥j;,. Note that now lim,, .., >/, zbzm =
220 97, since by (5.32), the tail sum sup,,en 252 pr41 |¥jin| < const. M~ — 0 (M —
o0). Formula (5.32) also implies

> )] < . (5.33)
7=0
Furthermore, since sup,en Y72 [¢j:n] < 00, we have
inf v, 0. 5.34
wenh oy Y () > (5.34)

Since ;,,, — ; (n — 00) and by using (5.32)-(5.34) one can show in a straightforward
way

lim ¥, (z) = ¥(z) and ¥(z Zzb]z] # 0 for |z| < 1. (5.35)

n—0o0
7=0
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By (5.33) and (5.35) we can invert and write 1/¥(z) = ®(z) = 1 — Y22, ¢;27 # 0 for
2] < 1.

Since ¥,,(z) — V¥(z) for |z] < 1 and by the invertibility of ¥, (.) and ¥(.), we also have
®,(z) — ®() for |z] < 1. By assumption, sup,en 2.2y §%|#;m| < C < 0o and therefore
3521 77185 < C. Thus, (¢;)jen € A

We know from the proof of Theorem 3.2 that (X, )iez has a dy limit X; = > 20 Yi€t—j,
which can be represented by inversion as X; = > 272, ¢; X;_; +¢;. By the proof of Theorem
3.4 in section 5.1, &, ~ f(x)dz with f € Fy()n),x and Eles)? < oo. Moreover, since

(¢7)jen € Ag,c, the process (Xi)iex is in SARig().a(),K,5.0-

As in the proof of Theorem 3.4 in section 5.1, the dy closure of Syr.g() n() x50 15 @
subset (not strict) of Syp.()n()K.8.0-

Finally, the processes in S4p.y(.).1(.),k,5,0 are strong-mixing, since their MA represen-
tations satisfy the conditions in Gorodetskii (1977). o

Acknowledgments: We thank David Freedman and David Aldous for helpful con-
versations.

References

[1] Akamanam, S.I., Rao, M. Bhaskara, Subramanyam, K. (1986). On the ergodicity of
bilinear time series models. J. Time Series Anal. 7 157- 163.

[2] Bickel, P.J. and Biithlmann, P. (1996). What is a linear process. To appear in Proc.
National Academy Sciences of U.S.A.

[3] Bickel, P.J. and Freedman, D.A. (1981). Some asymptotic theory for the bootstrap.
Ann. Statist. 9 1196-1217.

[4] Doukhan, P. (1994). Mixing. Properties and Examples. Lect. Notes in Stat. 85.
Springer, New York.

[5] Dunford, N. and Schwartz, J.T. (1957). Linear Operators. Part I: General Theory.
Interscience Publishers, New York.

[6] Durrett, R. (1991). Probability: Theory and Fzamples. Wadsworth & Brooks/Cole,
Pacific Grove.

[7] Gorodetskii, V.V. (1977). On the strong mixing property for linear sequences. Theory
Probab. Appl. 22 411-413.

[8] Grenander, U. and Szegd, G. (1984). Toeplitz Forms and their Applications. 2nd ed.
Chelsea, New York.

[9] Hannan, E.J. (1987). Rational transfer function approximation. Stat. Science 5 105-
138.

[10] Hartigan, J.A. (1983). Bayes Theory. Springer, New York.
[11] Kleiner, B., Martin, R.D. and Thomson, D.J. (1979). Robust estimation of power
spectra. J. Roy. Statist. Soc. B 41 313-351.

29



[12] Linnik, Y.V. (1964). Decomposition of Probability Distributions. Oliver & Boyd, Ed-
inburgh.

[13] Mallows, C.L. (1972). A note on asymptotic joint normality. Ann. Math. Statist. 43
508-515.

[14] Markushevich, A.1. (1977). Theory of Functions of a Complex Variable. 2nd ed. Trans-
lated by R.A. Silverman. Chelsea, New York.

[15] Subba Rao, T. and Gabr, M.M. (1984). An Introduction to Bispectral Analysis and
Bilinear Time Series Models. Lect. Notes in Statist. 24. Springer, Heidelberg.

[16] Takano, K. (1956). Multidimensional central limit criterion in the case of bounded
variances. Ann. Inst. Statist. Math. 7 81-93.

Department of Statistics
367 Evans Hall #3860
University of California
Berkeley, CA 94720-3860
USA

30



