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Abstract

We study the properties of an MA(1)-representation of an autoregressive approx-
imation for a stationary, real-valued process. In doing so we give an extension of
Wiener's Theorem in the deterministic approximation set-up. When dealing with
data, we can use this new key result to obtain insight into the structure of MA(1)-
representations of �tted autoregressive models where the order increases with the sam-
ple size. In particular, we show strong consistency of the MA(1)-transfer function
via autoregressive approximation.
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1 Introduction

By Wold's decomposition theorem, every stationary, purely nondeterministic, real-valued
process fXtgt2ZZ with E[Xt] = 0 can be represented as an in�nite order moving-average
(MA(1)) Xt =

P1
j=0  j"t�j ( 0 = 1) with uncorrelated innovations f"tgt2ZZ. Under some

regularity conditions it is possible to invert this MA(1)-process and represent fXtgt2ZZ
as an in�nite order autoregressive process (AR(1)),

P1
j=0 �jXt�j = "t (�0 = 1). For

approximating the process we could therefore rely on a moving-average or on an autore-
gressive approximation. When dealing with data, autoregressive approximation, as a linear
method, is more popular and computationally much faster and easier. It is known that
this approximation is often useful and leads to good results in practice, cf. Durbin (1960),
Kromer (1970), Berk (1974), An et al. (1982), Hannan (1987).

On the other hand, the MA(1)-representation of a stationary process is extremely
useful in analyzing structural properties. Parts of the probability structure of a stationary
process can be discovered in an easy way via the MA(1)-representation, whereas they
become very complex or even intractable in the AR(1)-representation. The prime exam-
ple is the autocovariance function R(k) = Cov(X0; Xk). In the MA(1)- representation,
R(k) =

P1
j=0  j j+k is the convolution of the  j 's, whereas in the AR(1)-representation,P1

j=0 �jR(k� j) = 0 (k > 0) describes an `in�nite recursion'. Another example is that of
establishing mixing properties of stationary processes, a tractable approach is given via
MA(1)- representations (cf. Doukhan (1994), Withers (1981)).

To better understand the structural properties of autoregressive approximations it
would therefore be very useful to know more about the corresponding MA(1)-representation.

In section 2 we consider deterministic approximations f�j;n; j 2 IN0gn2IN for f�jgj2IN0
.

If �n(z) =
P1

j=0 �j;nz
j (z 2 IC) is the approximating AR-transfer function we study the

behavior of 	n(z) = 1=�n(z) =
P1

j=0  j;nz
j (z 2 IC) which can be seen as an approx-

imation for the MA(1)-transfer function	(z) =
P1

j=0  jz
j (z 2 IC). We will give the

following key result: roughly speaking, if
P1

j=0 j
rj�j j < 1 (r 2 IN0) there exists n0 such

that

sup
n�n0

1X
j=0

jrj j;nj <1: (1.1)

For r = 0 this is a result in the spirit of Wiener, who has given such an implication in
the non-approximation set-up (cf. Wiener (1933), Zygmund (1959)). By representing this
new key result in a deterministic context we believe that it can serve as an excellent tool
in many di�erent areas.

In section 3 we consider the autoregressive approximations which are estimated by ob-
served data. More precisely, consider a sampleX1; : : : ; Xn from fXtgt2ZZ. Let �̂1;n; : : : ; �̂p;n
be the estimated coe�cients for an approximating AR(p)- process, where p = p(n) !
1 (n ! 1) with p(n) = o(n). Denote the �tted autoregressive process by X̂t, i.e.,Pp

j=0 �̂j;nX̂t�j = "t; �̂0;n = 1. If suptEj"tj < 1, it is known that one can usually invert

fX̂tgt2ZZ and represent it as an MA(1), i.e., X̂t =
P1

j=0  ̂j;n"t�j ;  ̂0;n = 1. However,

little is known about the behavior of the MA(1)-coe�cients f ̂j;n; j 2 IN0gn2IN and the

corresponding transfer function
P1

j=0  ̂j;nz
j (z 2 IC; jzj � 1) which are derived via au-

toregressive approximation. Our result (1.1) translates then to the case where estimation
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through data is performed. Roughly speaking we obtain under the same condition as for
(1.2) about the summability of the coe�cients f�jgj2IN0

: there exists a random variable
n1 such that

sup
n�n1

1X
j=0

jrj ̂j;nj <1 almost surely: (1.2)

Our result (1.2) opens now the door for answering structural questions of interest of
(stochastic) autoregressive approximations. It is very useful from a theoretical point of
view and can serve as a key result in analyzing statistical problems in the domain of
this approximation theory. An almost immediate consequence of (1.2) will be the strong
consistency of the MA(1)-transfer function via autoregressive approximation

P1
j=0  ̂j;nz

j

for
P1

j=0 jz
j (jzj � 1). Bhansali (1989) has shown consistency and even asymptotic

normality of  ̂j;n for  j for a �nite collection of j's. His results do not handle in�nite

collections, as in the case of the transfer function
P1

j=0  ̂j;nz
j . Another example where

a non-�nite collection of j's come into play is the h-step prediction mean square error
�2
Ph�1

j=0  
2
j (h � 1), where h = h(n) ! 1 (n ! 1) and h(n) = o(n) (see Bhansali

(1989), formula (2.3)). Our result (1.2) together with the consistency of the MA(1)-
transfer function are new contributions in the �eld of autoregressive approximation.

There are situations in practice where MA-representations arise naturally, as an ex-
ample we mention here oil investigation (cf. Silvia and Robinson (1979)). If one uses
autoregressive approximation for estimation in these situations, one would �nally like to
transform the results back in the MA-representation for obvious reasons of interpretation.

2 Inverse of a deterministically approximated AR-transfer

function

A real-valued AR(1)-process with mean zero

1X
j=0

�jXt�j = "t; �0 = 1 (t 2 ZZ) (2.1)

is determined by the AR(1)-transfer function �(z) =
P1

j=0 �iz
j (z 2 IC) and the sequence

f"tgt2ZZ. Often f"tgt2ZZ is an i.i.d. or martingale-di�erence sequence with E["t] = 0,
Ej"tj

2 < 1. The structure of the model (2.1) can be better exploited for some purposes,
if the model is representable as a real-valued MA(1)-process, i.e.,

Xt =
1X
j=0

 j"t�j ;  0 = 1 (t 2 ZZ): (2.2)

For modelling processes with arbitrary mean we would replace Xt by Xt �E[Xt]; t 2 ZZ.
In the sequel we denote by 	(z) =

P1
j=0 jz

j (z 2 IC) the MA(1)-transfer function.
The equivalence of models (2.1) and (2.2) is known if E["t] = 0, suptEj"tj <1 and either
of the following conditions hold (cf. Berk (1974)):
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(i) �(:) 6= 0 for jzj � 1;
P1

j=0 j�j j <1.

(ii) 	(:) 6= 0 for jzj � 1;
P1

j=0 j j j <1.

Then 	(z) = 1=�(z) (jzj � 1). The decays of the coe�cients f�jgj2IN0
and f jgj2IN0

are
related, for completeness we restate a known result (cf. Brillinger (1975), chapter 3.8).

Lemma 2.1 The following statements (i) and (ii) are equivalent:

(i) �(:) 6= 0 for jzj � 1 and
P1

j=0 j
rj�j j <1; r � 0 (r 2 IR),

(ii) 	(:) 6= 0 for jzj � 1 and
P1

j=0 j
rj jj <1; r � 0 (r 2 IR).

Remark: The case r = 0 is essentially due to Wiener (1933), r > 0 follows by results
of Gelfand et al. (1964).

Let us consider now a sequence f�n(:)gn2IN of approximations for the AR(1)-transfer
function �(:) and study the behavior of the inverted �n(:)'s as approximations for the
MA(1)-transfer function 	(:). Let f�j;n; j 2 IN0gn2IN be a sequence in IRIN0 with �0;n = 1
for all n 2 IN. Denote by

�n(z) =
1X
j=0

�j;nz
j (z 2 IC)

and (at least formally)

1=�n(z) = 	n(z) =
1X
j=0

 j;nz
j (z 2 IC)

(the validity of the expansion of 	n(z) is given below). The following Lemma gives insight
into the structure of an inverted approximation of an AR(1)-transfer function. The
results are crucial in the estimation stage for AR(1)-processes. For striving generality
we formulate them in a deterministic set-up, since we believe that they could be useful in
various other contexts.

Lemma 2.2 Assume that 	(z) =
P1

j=0  jz
j is bounded away from zero for jzj � 1.

Suppose that
P1

j=0 j
rj j j < 1 and

P1
j=0 j

rj�j;n � �j j = o(1) (n! 1) for some r 2 IN0.
Then the following holds:

(i) There exists n0 2 IN such that

sup
n�n0

1X
j=0

jrj�j;nj <1;

and
inf
n�n0

inf
jzj�1

j�n(z)j > 0:

(ii) There exists n1 such that for n � n1, 	n(z) converges absolutely for jzj � 1 and

sup
n�n1

1X
j=0

jrj j;nj <1:
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Proof:
(i) The �rst statement follows immediately by the assumptions about f�j;n; j 2 IN0gn2IN
and Lemma 2.1. For the second statement we use that �(z) = 1=	(z) is bounded away
from zero for jzj � 1.

(ii) We �rst prove the case r = 0, which needs a modi�cation of Wiener's Theorem. We
closely follow Zygmund (1959), Theorem 5.2. For a Fourier series g(x) =

P1
j=0 aje

ijx (aj 2
IR) we denote by kgk =

P1
j=0 jajj. Let f(x) = �(eix) =

P1
j=0 �je

ijx (0 � x � 2�). Denote
by fn(x) = �n(e

ix).
By (i) there exists � > 0 and an n0 such that

inf
n�n0

inf
x2[0;2�]

jfn(x)j � �:

Since �(z) = 1=z is analytic for fz 2 IC; jzj � �0g (�0 > 0) there exists a � > 0 such that
�(:) is regular in fz 2 IC; jz� fn(x)j � 2�; x 2 [0; 2�]; n � n0g. (We use here the notation
�(:), whereas Zygmund uses �(:)). Here it is crucial that � is universal for all n � n0.
Let s(:) be a partial sum of f(:) such that ks � fk � �=4. Then s(:) is also a good
approximation for fn(:) if n is su�ciently large. More precisely, we show now that there
exists an ~n0 = ~n0(�) such that

max
0�x�2�

js(x)� fn(x)j � ks� fnk � �=2 for n � ~n0: (2.3)

We write ks � fnk � ks � fk + kfn � fk � �=4 + kfn � fk. By the assumptions about
the �j;n's we know that there exists an ~n0 = ~n0(�) such that kfn � fk � �=4 for n � ~n0,
which proves (2.3). Note again that s(:) is universal for all n � ~n0.
By Cauchy's formula we have

�(fn(x)) =
1

2�

Z 2�

0

�[s(x) + �ei�]

s(x) + �ei� � fn(x)
�ei�d�:

The universal bounds for k�[s(x)+ �ei�]k and ks(x) + �ei� � fn(x)k follow as in Zygmund
(1959), for the latter we use the inequality in (2.3). Then we complete the proof for the
case r = 0 as in Zygmund (1959), proof of Theorem 5.2.

The case r > 0; r 2 IN can be handled via di�erentiation. Denote by (r) the r-th
derivative. We know that for n su�ciently large

	(r)
n (z) =

1X
j=r

j!=(j � r)! j;nz
j�r

has the same radius of convergence as 	n(z), which is � 1. Let us now calculate 	
(r)
n (z)

via the identity 	n(z) = 1=�n(z). Then

	(r)
n (z) =

X
finite

Ai
1

Bi
;

where Ai involves �nite products of �
(s1)
n (z) and (�n(z))

s2 with positive or negative signs,
s1; s2 2 f0; : : : ; rg and Bi involves (�n(z))s3 , s3 2 f2; : : : ; 2rg.
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In particular, 1
Bi

can be expressed in terms of (	n(z))
s3 . By the de�nition of k:k we have

1X
j=r

j!=(j � r)!j j;nj = k	(r)
n (:)k �

X
finite

kAikk
1

Bi
k:

(For properties of k:k see also Zygmund (1959), page 245).
From the assumptions about the �rst statement in (i) we know that

kAik �M1 <1 for all n � n0:

From the case r = 0 we know that

k
1

Bi
k � k	n(:)k

s3 �M2 <1 for all n � ~n0:

Hence there exists n1 = maxfn0; ~n0g such that

sup
n�n1

1X
j=0

j!=(j � r)!j j;nj <1: (2.4)

We write

1X
j=0

jrj j;nj �
r�1X
j=0

jrj j;nj+
1X
j=r

jrj j;nj

� (r � 1)r
1X
j=0

j j;nj+ 2r
1X
j=r

(j � (r � 1))rj j;nj+ 2r(r � 1)r
1X
j=r

j j;nj:

Hence we complete the proof by using the fact that r is �nite, part (ii) with r = 0 and
(2.4). 2

3 Inverse of an estimated AR-transfer function

In this section we demonstrate the use of Lemma 2.2 when the approximation for the
AR(1)-transfer function is estimated from the data. Let X1; : : : ; Xn be a sample from
fXtgt2ZZ. We make the following assumptions:

(A) Model (2.2) holds with
P1

j=0 j
rj jj < 1; r 2 IN0, strengthening this for the case

r = 0 to
P1

j=0 j
1=2j jj <1, and f"tgt2ZZ is stationary ergodic with

E["tjFt�1] � 0; E["2t jFt�1] � �2 <1; Ej"tj
4 <1;

where Ft = �(f"s; s � tg) denotes the �-�eld generated by "s; s � t.

The estimation of �(z) =
P1

j=0 �jz
j is based on a usual autoregressive approximation, cf.

Berk (1974), An et al. (1982), Hannan (1987). Let p = p(n)! 1 (n ! 1) with p(n) =
o(n). Then we estimate (�1; : : : ; �p)

T by the Yule-Walker estimates �̂p = (�̂1;n; : : : ; �̂p;n)
T ,

de�ned by

�̂p�̂p = �
̂p;
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where �̂p = [R̂(i� j)]i;j=1;:::;p; 
̂p = (R̂(1); : : : ; R̂(p))T , R̂(j) = n�1
Pn�jjj

t=1 XtXt+jjj.
Here we have neglected mean correction which would be needed in practice. But all
the results presented below still hold if E[Xt] 6= 0 and the sample Xt is adjusted by
Xt � �X; t = 1; : : : ; n.
We set �̂n(z) =

Pp
j=0 �̂j;nz

j ; �̂0;n = 1. If suptEj"tj <1, the �tted autoregressive process

pX
j=0

�̂j;nX̂t�j = "t

is always causal (cf. Brockwell and Davis (1987), page 233), i.e.,

Xt =
1X
j=0

 ̂j;n"t�j with
1X
j=0

j ̂j;nj <1;

1=�̂n(z) = 	̂n(z) =
1X
j=0

 ̂j;nz
j (jzj � 1):

The next result clari�es about the behavior of
P1

j=0 j
rj ̂j;nj; r 2 IN0.

Theorem 3.1 Suppose assumption (A) holds with r 2 IN0 and
p(n) = o((n=log(n))1=(2r+2)). Then there exists a random variable n1 such that

sup
n�n1

1X
j=0

jrj ̂j;nj <1 almost surely:

Proof: Let �j;n be de�ned by the (theoretical) Yule-Walker equations

�p�p = �
p;

where �p = (�1;n; : : : ; �p;n)
T , �p = [R(i � j)]i;j=1;:::;p, 
p = (R(1); : : : ; R(p))T , R(j) =

Cov(X0; Xj). For ease of notation set �̂j;n = �j;n = 0 for j > p and �0;n = 1. Then

1X
j=0

jrj�̂j;n � �j j �
pX

j=0

jrj�̂j;n � �j;nj+
pX

j=0

jrj�j;n � �j j+
1X

j=p+1

jrj�j j

= I + II + III: (3.1)

A �rst rough bound leads to

I � pr+1 max
1�j�p

j�̂j;n � �j;nj:

In Hannan and Kavalieris (1986), Theorem 2.1 it is shown that

max
1�j�p

j�̂j;n � �j;nj = O((log(n)=n)1=2) almost surely:

Therefore by the assumption about p we have that I = o(1) (n!1) almost surely.
Expression II can be bounded by the extended Baxter inequality (cf. Deistler and Hannan
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(1988), Theorem 6.6.12 and page 271; note that this result also holds for their � = 0).
Then, for n su�ciently large

II � c
1X

j=p+1

(2r + jr)j�jj;

where c is a constant depending on the true structure. Hence II = o(1) (n!1).
Finally III = o(1) (n! 1) by assumption (A) and Lemma 2.1. Note that the terms II
and III are deterministic.
Therefore by (3.1)

1X
j=0

jrj�̂j;n � �j;nj = o(1) (n!1) almost surely;

and the proof is completed by Lemma 2.2. 2

Theorem 3.1 also holds under the weaker assumption in (A) that E["2t jF�1] = �2 instead
of E["2t jFt�1] = �2.

The above Theorem is useful for establishing bounds, but says nothing about the
convergence of 	̂n(z) =

P1
j=0  ̂j;nz

j to 	(z) =
P1

j=0  jz
j (jzj � 1). The following

Theorem establishes the consistency of estimating 	(:) via autoregressive approximation.

Theorem 3.2 Suppose assumption (A) holds with r = 1 and p(n) = o((n=log(n))1=4).
Then

	̂n(z) = 	(z) + o(1) (n! 1) almost surely,

the convergence being uniform in z for jzj � 1.

Remark: Similar results could be derived for the derivatives of 	̂n(:) and 	(:).
Proof: It is su�cient to show

1X
j=a(n)+1

j ̂j;nj = o(1) almost surely; (3.2)

a(n)X
j=1

j ̂j;n �  j j = o(1) almost surely; (3.3)

where a(n)!1 suitably (n!1). We choose a(n) = o(p(n)) and a(n) � p(n).
Formula (3.2) follows by Theorem 3.1, i.e., there exists a random variable n1 such that for
n � n1

1X
j=a(n)+1

j ̂j;nj � a(n)�1 sup
n�n1

1X
j=0

jj ̂j;nj = o(1) almost surely:

We show (3.3) by constructing a �tted AR(p)-process fYtgt2ZZ independent of the observa-
tion process fXtgt2ZZ; then the proof is elegant by using known results about autoregressive
approximation. Let

pX
j=0

�̂j;nYt�j = �t; (3.4)
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where �t is i.i.d. with E[�t] = E["t] = 0; Ej�tj
2 = Ej"tj

2 = �2 and the �t being independent
of Ys; s � t. Then, since every �tted AR(p)-process is causal (cf. Brockwell and Davis
(1987), p.233),

Yt =
1X
j=0

 ̂j;n�t�j : (3.5)

Denote by EY and by CovY the conditional expectation and covariance with respect to
Y given the sample X1; : : : ; Xn. By (3.4)-(3.5) we get for u � 0:

E[Yt+u�t] = �2 ̂u;n =
pX

j=0

�̂j;nRY (u+ j);

where RY (k) = Cov(Y0; Yk) = �2
P1

j=0  ̂j;n ̂j+jkj;n. Note that by construction via the

Yule-Walker estimates, RY (k) = R̂(k) (jkj � p), where R̂(k) = n�1
Pn�jkj

t=1 XtXt+jkj.
On the other hand,

�2 u =
1X
j=0

�jR(u+ j):

Now

a(n)X
j=1

j ̂j;n �  jj

� ��2
a(n)X
j=1

1X
i=0

j�̂i;n � �ijjRY (j + i)j+ ��2
a(n)X
j=1

1X
i=0

j�ijjRY (j + i)� R(j + i)j

� ��2a(n)jRY (0)j
1X
i=0

j�̂i;n � �ij+ ��2
a(n)X
j=1

1X
i=0

j�ijjRY (j + i)�R(j + i)j

= I + II:

By choosing a(n) growing su�ciently slow, the term I goes to zero almost surely by the
proof of Theorem 3.1, see formula (3.1).
For expression II we write:

II � ��2a(n)
p�a(n)X
i=0

j�ij max
0�j�p

jR̂(j)�R(j)j

+ a(n)
1X

i=p�a(n)+1

j�ij(
1X

k=p�a(n)+2

1X
j=0

j ̂j;n ̂j+k;nj+
1X

k=p�a(n)+2

1X
j=0

j j;n j+k;nj):

By Theorem 3.1 and
P1

j=0 j jj <1 and
P1

i=0 j�ij <1 we know that the second term on
the right hand side is going to zero almost surely (choose a(n) su�ciently slowly growing).
For bounding the �rst term on the right hand side we use

max
0�j�p

jR̂(j)�R(j)j = o((log(n)=n)1=2) almost surely
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(cf. An et al. (1982), Theorem 3).
Therefore:

II � a(n)o((log(n)=n)1=2) + o(1) almost surely:

Since a(n) is growing slowly, we get II = o(1) almost surely. This completes the proof of
(3.3) and hence of Theorem 3.2. 2

Theorem 3.1 might be extended to parameters r with values in IR+[f0g by using fractional
derivatives. Such a stronger result would yield weaker assumptions for Theorem 3.2, in
particular (A) with some r > 0. To see this, note that for proving Theorem 3.2 we
have only used r = 1 in (3.2) to bound the term

P1
j=a(n)+1 j ̂j;nj . These mathematical

generalizations are not the scope of this paper.
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