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Abstract

We consider situations in which there is a change point in the activity

of a cell, that is, some time after an external event the firing rate of the cell

changes. The change can occur after a random delay. The distribution of

the time to change is considered unknown.

Formally we deal with n i.i.d. random point processes, each of these

is an inhomogeneous Poisson processes, with one intensity until a ran-

dom time, and a different intensity thereafter. Thus, the change point

is not explicitly observed. We present both a simple estimator and the

non-parametric maximum likelihood estimator (NPMLE) of the change

point distribution, both having the same rate of convergence. This rate

is proved to be the best possible. The extension of the basic model to

multiple processes per trial with different intensities and joint multiple

change points is demonstrated using both simulated and neural data. We

show that for realistic spike train data, trial by trial estimation of a change

point may be misleading, while the distribution of the change point dis-

tribution can be well estimated.

Keywords: Peri-stimulus time histogram, neural data, semiparametric mod-

els, hidden Markov models, mixture models, Empirical Bayes.

1 Introduction

The synchrony between neural activity and external event is a major tool in

neurophysiological studies of the brain. The data is typically analyzed using

the Peri-Stimulus Time Histogram (PSTH). Different trials are aligned with

respect to the time of the external event and the average change over many

trials of the intensity of the neural activity is observed. However, using this

technique, one cannot distinguish between a smooth transition in any single

trial between two regimes on one hand, and a sharp transition at each trial, but

with a jitter in the transition times between the trials on the other.
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Technically, we consider a situation in which i.i.d. copies of a multivariate

point process on a fix interval are observed. The intensity of the process is

not fixed along the interval but changes once or more. The time of the change

points may vary from copy to copy.

In this manuscript the problem is treated in two different ways: both as

a formal statistical problem and as tool for the analysis of neural data. The

biological question behind the statistical discussion is the extent to which the

activity of a specific group of neurons in the monkey’s brain is synchronized

with the external behavior of the animal. Here the model is extended to more

than one change point and to multivariate counting processes. The estimation

procedure assumes that the change points actually exist, and that the different

components of the multivariate process are, given the change points times,

independent inhomogeneous Poisson processes. These assumptions are not

necessarily valid in all situations, but we argue that they are reasonable for

our examples. The different extensions of the model are applied to real and

simulated data.

Mathematically, we analyze a problem in which it is assumed that there is

only one change point per trial, whose time is a random variable distributed

according to a distribution function G. For each trial, we assume an inhomoge-

neous Poisson process that has a constant intensity λ0 until the change point,

and a constant intensity λ1 thereafter. The actual time of the change point is not

observed explicitly. The parameters G, λ0 and λ1 are not known. The informa-

tion bounds and the efficient score functions are given. In a nutshell, we have

an explicit expression for the score function only in a relatively trivial case. The

maximum likelihood estimator as well as simple estimators are presented. In

particular, the distribution function of the time to change can be estimated us-

ing a simple monotone regression estimator. The rates of convergence of these

simple estimators are optimal.

The change point model for a single Poisson process (and a single trial) was
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discussed in a few earlier papers, e.g., Matthews, Farewell and Pyke (1985);

Akman and Raftery (1986) and the standard Bayesian analysis is discussed

in Raftery and Akman (1986). The change point methodology was discussed

in the context of neuron activity by Commenges and Seal (1985), where the

change point was estimated for each trial separately, which may be difficult

in some applications. A typical firing rate for a neuron is a spike every 20 to

200ms on the average. Hence there is an error of a few hundreds millisecond

in the estimation of a single change point. This is too crude for a typical behav-

ioral task. In our simulation, we present an example, where the change point

distribution can be estimated, reasonably well, while it almost impossible to

locate the individual change points. Note however, that the brain system ob-

serves many cells at the same time, and therefore can detect the change point

exactly, even when it is not possible in the experimental setting where only

one or at most a few cells can be observed simultaneously.

Our point of view is akin to hierarchical Bayes or, closer, to the empirical

Bayes formulation of the problem. Previously, empirical Bayes models were

employed by Joseph and Wolfson (1992); Bélisle, Joseph, MacGibbon, Wolf-

son and du Berger (1998) in the context of change point detection for spike

data. See a relevant recent discussion of empirical Bayes procedures in Efron

(1996). Leaving philosophy aside, we consider the problem as a semipara-

metric mixture model, Bickel, Klaassen, Ritov and Wellner (1993); Robins and

Ritov (1997). The typical neuronal experiment in which the activity of single

cells is recorded involves a repeated task in which the animal is reacting to

external cues. The experimenter tries to understand how the cells activity is

related to different sensory and motor events. The distribution of the change

point time may be interesting in particular in situations where it is not known

a priori with which external event the neuronal activity is synchronized. In a

typical experiment, an observed change in the neurons activity may be related

to the visual cue that the monkey receives, to the eye movement that follows,
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or to the movement of his arm. The times of these events are recorded, and we

may try to test to which of them the activity is better synchronized (Seal, Com-

menges, Salamon and Bioulac (1983); Seal and Commenges (1985); Schwartz,

Kettner and Georgopouls (1988); Montgomery (1989); Crutcher and Alexan-

der (1990); Romo and Schultz (1990)). In this paper, a single change point

was located for each neuron and task condition using a formal hierarchical

Bayesian methods. Our method was applied to other data set as presented in

Ritov, Raz and Bergman (1997). The model analyzed by Bélisle et al. (1998) is

similar to ours, except that it was analyzed using Bayesian tools, both in the

model formulation and in the algorithms, they used Gibbs sampler, while we

used a non-iterative simple estimator and the EM algorithm to calculate the

maximum-likelihood estimator. Moreover, we extend their model to examples

of multiple change point and multiple cells. Finally, we give the theoretical

justification to the technique used.

2 Methods

Our empirical data were recorded from two awake vervet (green) monkeys

(Cercopithecus aethiops aethiops). The monkeys were trained to perform a visual-

motor task with two behavioral paradigms, see details in Raz, Vaadia and

Bergman (2000). Briefly, the trials were as follows. Four seconds after the end

of the previous trial the program started checking if the central key is touched.

In most cases, the monkey would have touched the key during the inter-trial

period. If not, the program waited until the key has been touched. Immedi-

ately (less than 1ms) after it touched the key, the “get ready” LED was turned

on. After a variable delay (3 - 6s), one of the two peripheral target keys was il-

luminated for 0.25s, and the monkey got a trigger signal after another random

delay of 1, 2, 4, or 8s. At this point the monkey was supposed either to re-

lease the central key and touch the target key (the “GO” paradigm), or to keep

4



touching the central key (the “NO-GO” paradigm). If the monkey did this, it

was rewarded with 0.15ml of juice. After 4 correct trials, there was a 4s signal

instructing the monkey to change paradigm from “GO” to “NO-GO” or vice

versa. The monkey was fully trained before recording started. In each record-

ing session, the activity of two to eight single cells in the basal ganglia was

recorded. In a single recording session, a few hundreds trials were recorded.

Typically the number of valid records from any single cell is between a few

tens to a few hundreds trials.

The cells whose activity we analyze are from the external segment of the

globus pallidus (GPe). These cells are characterized with a fast tonic rate (a few

tens of spikes per second), and with unexplained short intervals in which they

are silent, DeLong (1971); DeLong and Georgopoulos (1981)). It looks as if the

cells behave independently, Nini, Feingold, Slovin and Bergman (1995); Raz

et al. (2000). The exact function and the mode of activity of the basal ganglia

are not known. We assume that a model in which some cells switch abruptly

to a different mode is reasonable.

3 Results

3.1 The model

The data used for the analysis can be summarized as follows. We measure the

activity of K � 1 cells during n trials. For each trial we record the activity of

each of the cells during a window synchronized on an given activity of the

monkey during the trial.

Formally, the observations are at discrete time, a;a+1; : : : ;b for some a and

b. We assume that for each trial i, i = 1; : : : ;n, there are multiple change points

a < Ti1 < � � � < TiM < b, for some M � 1. We observe for each trial K counting

processes. The processes are independent homogeneous Poisson processes be-

tween the common change points. In other words, for all i = 1; : : : ;n, N i1; : : :N iK
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are independent given Ti1; : : : ;TiM . The values N ik (t), i = 1; : : : ;n, k = 1; : : : ;K,

t = a; : : : ;b, represent the total number of spikes fired by the k-th cell dur-

ing the time interval from a to t: N ik (t) � ∑t
s=aNik(s). We assume that the

Bernoulli random variables Nik(a); : : : ;Nik(b) are independent given Ti1; : : : ;TiM ,

and P(Nik(t) = 1
�� Ti1; : : : ;TiM ) = 1�P(Nik(t) = 0

�� Ti1; : : : ;TiM ) = pkm, Tim � t <

Ti;m+1, m=0,. . . ,M, where, formally, Ti0 � a and Ti;M+1 � b+1. In other words,

the data are a collection of independent Bernoulli random variables, whose

probability of success depend on the cell and the random time interval to

which they belong. The latter is defined in terms of the change point times.

The Bernoulli model is typically not valid, as the cells have refractory peri-

ods, however, it can be a valid approximation if the refractory period is much

shorter than then the mean inter spikes time.

We need to restrict the structure of the joint distribution of the change point

times, because of statistical and computational considerations. We considered

two alternative assumptions:

[A1] Ti1; : : : ;TiM are independent with distribution functions G1; : : : ;GM re-

spectively. In particular, the supports of these distributions are mutually ex-

clusive.

or

[A2] Ti1;Ti2�Ti1; : : : ;TiM �Ti;M�1 are independent with distribution functions

G1; : : : ;GM respectively.

A1 describes a situation in which all change point are relative to the syn-

chronizing event, while A2, for M = 2, describes an situation in which the cell

react to the external event at time Ti1 for a duration of Ti2�Ti1. Practically, the

algorithm for the second case was useful only for M = 2: a random length first

period, then an intermediate interval with a random length, and thereafter a

final period. The algorithm can be too slow for any larger M.
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The likelihood function to be maximized under assumption A1 is:

L(fgm(t)gm=1;:::;M
t=a;:::;b

; fpkmgk=1;:::;K
m=1;:::;M

)

=
n

∏
i=1

∑
a<t1<���<tM<b

M

∏
m

gm(tm)
K

∏
k=1

M+1

∏
m

p
∑tm

t=tm�1
Nik(t)

km (1� pkm)
tm�tm�1+1�∑tm

t=tm�1
Nik(t);

where t0 = a and tM+1 = b, and gm(t) is the point mass at t of the m-th distribu-

tion.

It is similar under assumption A2:

L(fgm(t)gm=1;:::;M
t=a;:::;b

; fpkmgk=1;:::;K
m=1;:::;M

)

=
n

∏
i=1

∑
a<t1<���<tM<b

M

∏
m

gm(tm� tm�1)
K

∏
k=1

M+1

∏
m

p
∑tm

t=tm�1
Nik(t)

km (1� pkm)
tm�tm�1+1�∑tm

t=tm�1
Nik(t);

where t0 = a and tM+1 = b.

3.2 The algorithms

Suppose the change point times, Ti j , i = 1; : : : ;n, j = 1; : : : ;M, were observed.

Then, the distribution of the time to the change points could be estimated eas-

ily by the empirical distribution of the corresponding variables, and the prob-

abilities, p1; : : : ; pM could be estimated by the corresponding means in the sam-

ple. This makes the model a typical missing data model. Note that by missing

we don’t necessarily mean that data was lost. It may that the model can be

derived as a simpler model in which some of the variables are unobserved.

A standard method to maximize the likelihood in models with missing data

is the EM algorithm, Dempster, Laird and Rubin (1977). Generally speaking,

when the EM algorithm is used, it is assumed that besides the observed data

there are unobserved data, and we iterate between computing expectation of

the log-likelihood of the complete data over the conditional distribution of

the unobserved random variables giving the observed ones (the E-steps), and

maximizing this expectation (the M-steps).
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We used two versions of the EM algorithm for computing the (approxi-

mate) maximum likelihood estimators (MLE) of the different parameters. The

following notation is used. Hat above a parameter denote an estimator. The

distributions are approximated by discrete distributions have rm, m= 1; : : : ;M

support points. Note that both M and the r m’s are prescribed by the user. The

discrete distributions of the change point time are denoted by G, and their

probability functions are denoted by g. The EM algorithm for multiple inde-

pendent change points was as follows:

Algorithm 1:

1. Initial step Set l = 0, ĝ(l)m ( j) = 1=rm, j = 1; : : : ; rm, m = 1; : : : ;M and p̂(l)km =

(n(b�a+1))�1 ∑n
i=1N ik (b), k = 1; : : : ;K, m= 0; : : : ;M. Let zm(1); : : : ;zm(rm)

be the support point of the distribution of the m-th change point, m=

1; : : : ;M.

2. E-step Compute the likelihood function that the changes of the i-th trial

happened at j1; : : : ; jM :

Li( j1; : : : ; jM) =
K

∏
k=1

M

∏
m=1

0
@ p̂(l)k;m�1(1� p̂(l)km)

(1� p̂(l)k;m�1)p̂
(l)
km

1
A
Nik (zm( jm))0@1� p̂(l)k;m�1

1� p̂(l)km

1
A

zm( jm)

;

for i = 1; : : : ;n 1� jm� rm, m= 1; : : : ;M. Compute the a posteriori proba-

bilities for the vector of the i-th change point times:

Pi( j1; : : : ; jm) =
Li( j1; : : : ; jM)∏M

m=1 ĝ(l)m ( jm)

∑r1
j 01=1 : : :∑

rM
j 0M=1Li( j 01; : : : ; j 0M)∏M

m=1 ĝ(l)m ( j 0m)

3. M step Set l = l +1. Update ĝ(l)1 ; : : : ; ĝ(l)M to be the marginal distributions of

n�1 ∑n
i=1Pi(�). Update for k= 1; : : : ;K and m= 0; : : : ;M:

p̂(l)km=
∑n

i=1∑r1
j1=1 : : :∑

rM
jM=1Pi( j1; : : : ; jM)(N ik (zm+1( jm+1))�N ik (zm( jm)))

∑n
i=1 ∑r1

j1=1 : : :∑
rM
jM=1Pi( j1; : : : ; jM)(zm+1( jm+1)�zm( jm))

(3.1)
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4. Convergence check Stop if the number of iterations exceeds the pre-decided

tolerable number or the convergence criterion (3.2) below was less than

the pre-decided value. Other wise return to the E-step.

The algorithm for dependent change points (or independent start and du-

ration of an intermediate period) was as follows:

Algorithm 2:

1. Initial step: Like the initial step of algorithm 1 with M = 2.

2. E-step Let M=2. Let z1(1); : : : ;z1(r1) be the support of the distribution of the

first change point, and let t2(1); : : : ; t2(r2) be the support of the distribu-

tion of the time between the two change points. Compute the likelihood

function for the i-th trial:

Li( j1; j2) =

 
p̂(l)k0 (1� p̂(l)k1)

(1� p̂(l)k0 )p̂
(l)
k1

!Nik (z1( j1)) 
p̂(l)k1 (1� p̂(l)k2)

(1� p̂(l)k1)p̂
(l)
k2

!Nik (z1( j1)+z2( j2))

 
1� p̂(l)k0

1� p̂(l)k1

!z1( j1) 
1� p̂(l)k1

1� p̂(l)k2

!z1( j1)+z2( j2)

Define Pi as in (3.1).

3. M-step Set l = l +1 Update ĝ(l)1 ; ĝ(l)2 to be the two marginals of n�1∑n
i=1Pi(�),

Update for k= 1; : : :K:

p̂(l)k0 =
∑n

i=1∑r1
j1=1∑r2

j2=1Pi( j1; j1)N ik(z1( j1))

∑n
i=1∑r1

j1=1∑r2
j2=1Pi( j1; j1)(z1( j1)�a)

p̂(l)k1 =
∑n

i=1∑r1
j1=1∑r2

j2=1Pi( j1; j1)(N ik (z1( j1)+z2( j1))�N ik (z1( j1)))

∑n
i=1∑r1

j1=1∑r2
j2=1Pi( j1; j1)z2( j2)

p̂(l)k2 =
∑n

i=1∑r1
j1=1∑r2

j2=1Pi( j1; j1)(N ik (b)�N ik(z1( j1)+z2( j2)))

∑n
i=1 ∑r1

j1=1∑r2
j2=1Pi( j1; j1)(b�z1( j1)�z2( j2))

4. Convergence check Stop if the number of iterations exceeds the pre-decided

tolerable number or the convergence criterion (3.2) below was less than

the pre-decided value. Other wise return to the E-step.

In general, the EM algorithm may be very slow. In our simulation it was

reasonably fast for the single change points examples. It took around 1 minute
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on 133MHz PC. It was quite slow for some of our extensions where there were

more than one change point.

The stopping time was defined as the minimum between l = 500 and the

first l such that first time the difference between the estimates in two consecu-

tive iteration as measure by

∑M
m=1∑K

k=1

�� p̂(l)km� p̂(l�1)
km

��
∑M

m=1∑K
k=1 pkm

+
r

∑
j=1

��ĝ(l)j � ĝ(l�1)
j

��< 4�10�6; (3.2)

where p̂(l)km and ĝ(l)j are the estimators after l cycles of the algorithm.

In the first example the algorithm converged after 10 iterations. It con-

verges after 9 in the case of the third example. On the other hand, it stopped in

the second example after 500 iterations, when the first term of (3.2) was equal

to 2:5 10�7 and the second term was equal to 1:4 10�4.

3.3 Examples

3.3.1 One cell and one change point

The first record we discuss is of a GPe cell. We consider the interval starting

600ms before the time the monkey released the central key (RELEASE) and

ending 500ms after this event. The raster plot is given in Figure 1a, where

each horizontal line of dots represents a single trial, and each dot denotes a

spike at the trial and time relative to the synchronizing event, as given by its

coordinates. The same data is summarized in Figure 1b by the PSTH (Peri

Stimulus Time Histogram). Here we plot the total number of spikes (over

all the trials) in each 1ms interval, relative to the RELEASE time. The ver-

tical axis is scaled to denote the intensity (in spikes per second). The av-

erage intensity is 57.8, or, on the average, a spike every 17.3ms The PSTH

is smoothed in Figure 1 c with a Gaussian kernel with bandwidth of 4ms.

On the same graph, the PSTH is smoothed also by a monotone regression

estimator. We can observe from these figures that the intensity in decreas-

ing. The transition from high to low average intensity, as can be observed
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from the PSTH, is smooth. A more detailed observation of the raster plot

shows that in each trial the transition between the two periods is quite abrupt,

but the change time varies from trial to trial. One possible interpretation of

Figure 1b or Figure 1c, is that a change is happening before or at time -200ms,

and there after intensity is decreasing during approximately 200ms before it

stabilized again. However, this interpretation of the PSTH is wrong in view of

the raster plot. Our analysis will model this exactly. In this example and in the

other two examples, there is no need for a sophisticated test to verify that the

intensity is not constant. Formally, we considered a t-test for comparing the to-

tal count in the first 550ms to the total count of the second half. The t-statistics

has a value of 14.3 (P< 0:001).

The estimated p.d.f. and c.d.f. of the change point distribution are shown

in Figure 2. It can be observed that the lower intensity period starts in most

trials before the actual release, but the actual time varies between trial to trial.

3.3.2 Two change points

We consider now a second GPe cell from the same recording session as the

cell analyzed above. The raster plot and the PSTH are given in Figure 3.

As can clearly be seen from the PSTH, a simple change point model cannot

fit the data. However, we can try to fit a model with two change points. The

fact that there is an intermediate period with higher intensity can be verified

simply by considering the interval of length 1200ms around RELEASE. We di-

vided the interval into three equal parts and counted the number of spikes in

each sub-interval. The P-value of the t-test that compare the two extreme sub-

intervals is 0.7, while the t-test that compares the first and second sub-interval

has an apparent P-value of 10�8.

A model in which the width of the interval is independent of its initial time

was fitted to the data. That is, we assumed that there are i.i.d. pairs (Ti1;Ti2),
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i = 1; : : : ;n, such that Ti1 and Ti2�Ti1 are independent, and the intensity of the

process is λ1, λ2 and λ3, for t � Ti1, Ti1 < t � Ti2, and t > Ti2 respectively. The

support of the distribution was fitted by eye, to be as wide as possible. Thus

the support of the first change point was in the range of -300ms to -50ms, while

the width of the the second period was restricted to be in the range of 50ms to

450ms. The results obtained from applying Algorithm 2 to these data are given

in Figure 4. Note that the p.d.f. is 0 at most points. The first change point

is mainly distributed between 250ms to 150ms before RELEASE. The width

of the high intensity period was found to be mostly around 240ms, but with

probability of approximately 0.25 it got the maximal value that was permitted,

as if some in a quarter of the trial the second change point is missing. Note

that the probability mass assigned by the estimator is quite negligible on most

of the permitted support points. In fact, only in 6 out of the 26 support points

of the first distribution, and in 4 out of the 41 support points of the second

distribution, the algorithm assigned a probability larger than 0.001.

To check the reliability of the estimation procedure, we introduced a 100ms

jitter. That is, each spike train was shifted by a random time distributed uni-

formly between -50ms to 50ms. The spread of the distribution of the first

change point was increased (although, less than could be expected), while the

distribution of the second change point remained almost the same as expected

(since the time between the two change points was not expected to change by

the random shift). One can judge from the shape of the estimated distribu-

tion and the effect of introducing the jitter, that either the change point model

is not appropriate to this cell, or a much larger sample is needed for a stable

estimator.
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3.3.3 Two cells with one change point

We consider now a record of two GPe cells of the second monkey. (This mon-

key was trained for somewhat simplified experiment with only the “GO”

paradigm). We observe two cells around the RELEASE time. The data is ex-

hibited in Figure 5. There are 44 valid trials.

It seems that the two cells behave similarly. Clearly, the processes are not

homogeneous. Formally, we calculated a t-statistics that compared the number

of spikes in the first half to the number in the second half of the segment. We

obtained the values of 9.1 and 7.2 (P < 0:001) respectively for the two cells.

Marginally, for each cell we assume the same model as above. We assume,

however, that the two processes have the same change point, this change point

may vary from trial to trial, and the cells are independent given this change

point. This assumption seems to be plausible: We applied the algorithm to

the two neurons independently. The root-mean-squares distance between the

two estimated p.d.f.’s (one for each cell) was 0.07. The correlation coefficient

between the two vectors of a posteriori expected values of the change point

times was 0.46 .

The estimator is given in Figure 6. In Figures 6b and 6c we compare the

MLE estimate of the distribution function of the joint change point to the sepa-

rate estimates based on the monotone regression of the corresponding PSTHs.

These graphs show that the assumption of the existence of a joint change point

is reasonable.

3.3.4 Simulation: multiple processes and change points

We continue in our generalization. This time we simulated 100 trials in which

two neurons are observed. The two cells have the same change points, but

are independent otherwise. Three change points were simulated. The change

point time were independent and with different supports. The distributions of

the change points were gamma with a scale parameter 2 and shape parameters
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125, 250 and 375 respectively (and hence the mean times were 250, 500 and 750,

while the standard deviations are 22.36, 31.63, 38.73, respectively). The time

scale was chosen to be similar to the biological data, so the whole interval was

considered as having 1000ms length. The distribution was truncated to the

intervals (125;375), (375;625), and (625;875) respectively. The intensities of

the two processes were (40;10)(in the units of spikes/s) before the first change

point, (60;50) between the first and the second change points, (40;50) after

the second and (40;30) after the last change point. The raster plot is given in

Figure 7a, and the PSTH of these data is given in Figures 7b and 7c.

The first change can be observed nicely, the other change points can be

observed but less clearly. We looked for a single change point in each of the

intervals (125;375), (375;620), and (625;875). The starting point was a homo-

geneous Poisson process and uniform change point distribution on the grid

of 5ms in each of the intervals. In Figure 8 the estimated densities of the

change points are plotted together with the histogram of the actual “unob-

served” times. As can be expected from the raster plot, the distribution of the

first change point was well estimated. The two other distributions were esti-

mated better than we expected, but not as good as the first. The estimates of

the intensities are given in Table 1.

In Figure 9 we ordered the trials according to the time of the first change

point, and plotted the a posteriori expectation and the actual time of the first

change point as against trial number. That is, for each trial we computed the

a-posteriori distribution of the change point, as in the E-step of the algorithm,

and calculated the expectation of this distribution. It can be observed that

although the distribution was estimated quite well the individual times were

not. Of course, it can be expected that the Bayes estimator will shrink towards

the mean. The estimator seems to depend mainly on the a priori distribution.

In the introduction we argued that estimators which are based on the trial by

trial estimation of the change point may yield a poor estimator of the change
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point distribution. Figure 9 proves our case.

3.4 Mathematical background

In the appendix we give a rigorous analysis of a mathematical model of the

problem. Unlike the model discussed above, the theoretical model considered

have one change point and the observed process is of inhomogeneous Poisson

process. We discuss in the extended version the information bound for esti-

mating the intensities, and show that they can be estimated in the parametric
p

n rate. The distribution function, on the other hand, can be estimated only

in the rate of n1=3, a much slower rate than the n1=2 which is attainable with

direct observations on the change point times. A bound on the achievable rate

is established by presenting pairs of distributions which are n�1=3 apart but

the Neyman-Pearson tests between them have sum of errors bounded away

from 0. That this bound is actually achievable is proved by exhibiting a simple

non-iterative estimator that actually achieves the optimal rate. This estima-

tor is based on monotone smoothing of the PSTH which was used above. See

Figures 1(c), 2(b), 5(c), 6 (b) and (c), and 7(c). We also show that under some

conditions the maximum-likelihood is rate optimal.

4 Discussion

We applied the empirical Bayes change point methodology to neural data. Us-

ing empirical examples and simulated data we showed that this technique can

be used to obtain a sound understanding of the nature of the synchronization

between an external event and the cells activity.

The theoretical statistical discussion was restricted to point processes in

continuous time, while the algorithms were restricted to 0-1 processes in dis-

crete time. Both are approximations of reality. In practice, the cells operate in

continuous time while the output of the experimental system is in discrete one.
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Moreover, the spikes are not points in time, but have a duration of the order of

1ms. So we preferred to use the convenient model for the given discussion.

Another statistical method that was used for similar data is that of the hid-

den Markov model (HMM), Radons et al. (1994); Abeles et al. (1995); Gat,

Tishby and Abeles (1997); Ver Hoef and Cressie (1997). This model presumes

that the recorded cells are behaving as a Markov process with a finite state

space. These states are not observed directly. Instead, each state is charac-

terized by a different vector of cell intensities — the hidden mechanism. The

above papers suggest different algorithms to estimate the parameters of the

model, and show that the inferred states may have a biological meaning.

The change point model suggested in this paper may seem more restricted

than the HMM. Practically, the number of possible states was restricted to two

or three, with a prescribed transition order. However, by definition, the hidden

Markov model assumes that the brain stays at each state an exponential time.

In theory, this can bypassed by assuming many pseudo-states. Actually, any

stationary process can be weakly approximated by (not necessarily simple)

HMM, see Kunsch, Geman and Kchagias (1995). However, for this we may

need many more states than it would be practical to assume.

The change point model does not suffer from this problem. Any distribu-

tion function for the time of change can be assumed. Therefore, the change

point model is preferred to the HMM, whenever we assume that the number

of change points is small, and the distribution of the time to the changes is of

interest.

In this paper we consider a non-parametric model for the time to the change

in the intensity. We could assume a parametric model, such as a gamma dis-

tribution with one or two unknown parameters. However, such a parametric

assumption is restricting and without the usual benefits in terms of speed of

convergence and simplicity of the estimation procedure. The algorithm will

be much very much the same, and the rate of convergence will be not much
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different.

We considered the testing of the existence of a change point versus the

hypothesis that no change occurs. We intend to discuss elsewhere the more

difficult problem of the existence of a relatively sharp change at a random time

versus graduate change.

In this paper we considered a mathematical models of neurons which re-

act to external event after a random delay. The reaction is an abrupt change

in the firing intensity, but whose time is different in different trials. The main

take home message of our analysis is that in “real cases” of neuronal data, the

distribution of the change point can be estimated, while single trial estimating

of the specific value of the change point is prone to a large error. However,

proper estimation of the distribution of the change point can reliably help

in the discrimination between two plausible physiological scenarios. In the

first scenario there is a smooth transition of the discharge rate in all single

trials, whereas in the second scenario there are sharp transitions with jitter of

their timings. This discrimination can’t be done by the classical PSTH analysis,

and the present manuscript provides a quantitative (rather than the subjective

raster plot display) method for the discrimination between these two possible

physiological settings.
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31:23–36.

Radons, G., Becker, J. D., Dulfer, B., and Kruger, J. Analysis, classification,

and coding of multielectrode spike trains with hidden markov models. Biol

Cybern 1994; 71:359–373.

19



Raftery, A. E. and Akman, V. E. Bayesian analysis of a poisson process with a

change-point. Biometrika 1986; 73:85–89.

Raz, A., Vaadia, E., and Bergman, H. Firing patterns and correlations of spon-

taneous discharge of pallidal neurons in the normal and the tremulous 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism.

J Neurosci 2000; 20:8559–8571.

Ritov, Y., Raz, A., and Bergman, H. 1997;. An empirical bayes change point

problem with application to neurological data. In The International Sympo-

sium on Contemporary Multivariate Analysis and Its Applications, Hong Kong.

Ritov, Y., Raz, A., and Bergman, H. 2002;. Detection of onset of neu-

ronal activity by allowing for heterogeneity in the change points. Tech-

nical Report 622 Dept. of Stat., UCB http://www.stat.berkeley.edu/tech-

reports/index.html.

Robins, J. M. and Ritov, Y. Toward a curse of dimensionality appropriate (coda)

asymptotic theory for semiparametric models. Stat Med 1997; 17:285–319.

Romo, R. and Schultz, W. Dopamine neurons of the monkey midbrain: Con-

tingencies of responses to active tough during self-initiated are movements.

J Neurophysiol 1990; 63:592–606.

Schwartz, A. B., Kettner, R. E., and Georgopouls, A. P. Primate motor cortex

and free arm movemnets to visual tragets in three-dimensional space. i. re-

lations betwen single cell discharge and direction of movement. J Neurosci

1988; 8:2913–2927.

Seal, J. and Commenges, D. A quantitative analysis of stimulus- and

movement-related responses in the posterior parietal cortex of the monkey.

Exp Brain Res 1985; 58:144–153.

Seal, J., Commenges, D., Salamon, R., and Bioulac, B. A statisitical method for

the estiamtion of neuronal response latency and its functional interpretation.

Brain Res 1983; 278:382–386.

Ver Hoef, J. M. and Cressie, N. Using hidden markov chains and empirical

20



bayes change-point estimation for transect data. Environ Ecol Stat 1997;

4:247–264.

21



A Appendix: Mathematical background

A.1 Model and information bounds

Let T1; : : : ;Tn be unobserved i.i.d. random variables with a distribution function

G supported on the interval [0;1]. We observe the i.i.d. processes N 1; : : : ;Nn,

such that given T1; : : : ;Tn, N1; : : : ;Nn are independent, N i is an inhomogeneous

Poisson process on [0;1], with a constant intensity λ0 on the interval [0;Ti) and

another constant intensity λ1 on [Ti;1], i = 1; : : : ;n. The parameters λ0, λ1 and G

are unknown.

Let N� be a Poisson process with (known) intensity λ�. Reparametrize the

model by writing λ0 = λ�+ν�δ and λ1 = λ�+ν+δ. Suppose G2 G , a family

dominated by a σ-finite measure µG . With some abuse of notation, we inter-

change the two parametrizations. The process N has a density with respect to

the distribution of N� given by

f (N;ν;δ;g) = c1(N)
Z

e�λ0tλN(t)0 e�λ1(1�t)λN(1)�N(t)1 g(t)dµG (t)

= c2(N)

Z
e�ν+δ(2t�1)+N(t) log(λ�+ν�δ)+(N(1)�N(t)) log(λ�+ν+δ)g(t)dµG (t);

where c1 and c2 do not depend on the unknown parameters. See, for example,

Andersen, Borgan, Gill and Keiding (1993) page 98.

Let fGη :
��η��< εg �G be a one dimensional regular parametric sub-family

of G . Let Gη have density gη with respect to µG , and let h= ∂
∂ηgη=gηjη=0. The

score functions for ν, δ, and η, each with the other parameters known, are

`�
ν
�� δ;g

(N;λ0;λ1;g) = Eg
�
λ�1

o N(T )+λ�1
1 (N(1)�N (T ))�1

�� N�
`�

δ
�� ν;g

(N;λ0;λ1;g) = Eg
��λ�1

o N(T )+λ�1
1 (N(1)�N (T ))+2T�1

�� N�
`�

h
�� ν;δ

(N;λ0;λ1;g) = Eg(h(T) j N) :

To find the efficient score function for λ0 and λ1 (or, equivalently, ν and δ)

we have to find hν and hδ such that

E

�
`�

ν
�� δ;g

(N;λ0;λ1;g)+ `�
hν

�� ν;δ
(N;λ0;λ1;g)

���� T = t

�
� 0
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E

�
`�

δ
�� ν;g

(N;λ0;λ1;g)+ `�
hδ

�� ν;δ
(N;λ0;λ1;g)

���� T = t

�
� 0;

see Bickel, Klaassen, Ritov and Wellner (1993) Section 3.4 for details. We are

not able to find hδ and hν explicitly in the general case. There is, however, an

exception, which is very important for testing. When λ0 = λ1, N and T are

independent. Therefore

`�νjδ;g(N;λ0;λ0;g) = λ�1
0 (N(1)�1)

`�δjν;g(N;λ0;λ0;g) = λ�1
0 (N(1)�2Eg (N(T ) j N))+2EgT�1;

(A.1)

where, explicitly, Eg(N(T ) j N) =
R
N(t)g(t)dµG(t). Both of the expressions in

(??) have mean 0 given T (since N and T are independent and the expressions

have, unconditionally, mean 0). Hence hν � 0 and hδ � 0 and adaptation is

possible.

Moreover, the efficient score function for δ when both ν and G are un-

known, calculated under δ = 0, is given by the linear combination of the form

`�
δ
�� ν;g

+c`�
ν
�� δ;g

which has mean 0 even if ν is misspecified, Bickel et al. (1993).

It can easily checked that it is given by

`�δ(N;λ0;λ1;g) = 2λ�1
0

�
Eg(T)N(1)�Eg (N(T ) j N)� (A.2)

A.2 Simple estimators and the rate of convergence

We consider now a simple non-iterative estimators of the parameters, and

prove that these estimators actually achieve the best rate of convergence. That

is, the parameters λ0 and λ1 can be estimated at a rate of n1=2, and G can be

estimated at the slower rate of n1=3. However, some functions of G, notably its

mean, can be estimated at the n1=2 rate.

Theorem A.1 Suppose λ0 6= λ1 and there are t1; t2 2 (0;1) with 0< G(t1)< G(t2)<

1. Then λ0 and λ1 can be estimated at n1=2 rate. Moreover, E(T) can be estimated in

the same rate. Finally let G̃(�) = R �
0 G(s)ds. Then there is an estimator ˆ̃G(�) such that
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the process fpn( ˆ̃G(t)�G̃(t)) : t 2 [0;1]g is tight and converges to a limiting Gaussian

process.

Proof. The random variable N(t) (for a given t 2 (0;1)) is a mixture of Poisson

random variables: Given the unobserved T, N(t) is Poisson with mean λ0 +

2δ(t � T)+, where δ = (λ1� λ0)=2, where x+ is x for x > 0 and 0 otherwise.

Hence

et � EN(t) = λ0t +2δ
Z t

0
(t�s)dG(s)

= λ0t +2δ
Z t

0
G(s)ds

� λ0t +2δG̃(t); say:

(A.3)

Similarly,

vt � VarN(t)

= EVar
�
N(t)

�� T
�
+VarE

�
N(t)

�� T
�

= E
�
λ0t +2δ(t�T)

�
+Var

�
λ0t +2δ(T� t)

�
= et +4δ2

Z t

0
(t�s)2 dG(s)�4δ2�Z t

0
(t�s)dG(s)

�2

= et +8δ2
Z t

0
G̃(s)ds�4δ2G̃2(t); integration by parts

= et +4δ
Z t

0
esds�2λ0δt2�e2

t +2λ0ett�λ2
0t

2; by (??)

(A.4)

Let êt and v̂t be estimates of vt and et based on the i.i.d. sample, N1(t); : : : ;Nn(t).

These estimators are n1=2 consistent uniformly in t 2 [0;1]. In the simple case,

the functions t 7! tet ;
R t

0 esds t2, t 2 (0;1) are linearly independent. We can then

isolate J� 3 points, t1; : : : ; tJ, and find the least squares solution for the system

v̂t j � êt j + ê2
t j
= 4δ̂

Z ti

0
êsds� (λ̂2

0+2λ̂0δ̂)t2
j +2λ0êt j t j ; j = 1; : : : ;J (A.5)

with the three unknowns, δ̂, λ̂0 and λ̂2
0 +2λ̂0δ̂. The solution for the first two

unknowns can serve as estimates of δ and λ0.

The abovementioned three functions can be linearly dependent. Some te-

dious argument shows that they are linearly dependent iff G(t) = t ν, ν > 0,
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t 2 (0;1). In particular they are linearly independent if the support of G is a

(necessarily proper) subset of (0;1). If the functions are linearly dependent,

we can solve the non-linear system (??), only for t1 and t2 and the unknown

δ̂ and λ̂0. It can be verified that this system has at most 3 isolated solutions.

The correct solution can be found since, say, λ0 is the derivative of et at 0. In

practice, we can either start with the non-linear system, or consider the linear

system, and retreat to the non-linear system if the condition number is smaller

than n�1=4.

Since e1 = λ0 + 2δ(1�ET), the expectation of T can be estimated in the

n1=2 rate, as well as the smooth function G̃(�) of G, which can be estimated

by ˆ̃G(t) = (ê(t)� λ̂0t)=2δ̂. Moreover, the process
p

n( ˆ̃G(�)� G̃(�)) is tight, since
p

n(ê��e�) is tight.

�

Finally, G itself can be estimated using a simple monotone intensity esti-

mator as proved next. Explicitly, let N+(�) = ∑n
i=1N i (�). That is, if, without

any lose of generality, λ̂1 < λ̂0, then let C n be the piece-wise constant deriva-

tive of the least concave function larger than N+ . Then G can be estimated by

Ĝ= (λ̂0� λ̂1)
�1(λ̂0� C n).

Theorem A.2 Suppose that G has a bounded density and there is an open interval on

which G has a density bounded away from 0. Then the optimal rate of convergence of

an estimator of G to G is n1=3 in the sense that there is an estimator Ĝn of G such that

1. Ĝ(t) = G(t)+Op
�
n�1=3

�
for any t 2 (0;1).

2. nα


Ĝ�G




∞

p�! 0 for any α < 1=3.

3. nα
��G̃(t)�G(t)

�� p�! ∞ for any α > 1=3, t 2 (0;1), G0(t)> 0 and any estimator

G̃ of G.

Proof. We prove first that the n1=3 rate is attainable. Assume, w.l.o.g., that λ1 >

λ0. Ignore the trial information, and let N+(�) = ∑n
i=1N i (�). Then N+ (given the
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set f T1; : : : ;Tng) is an inhomogeneous Poisson process with intensity λ�(t) =

n
h
λ1G n(t)+ λ0

�
1� G n(t)

�i
, where G n is the empirical distribution function of

T1; : : : ;Tn. In particular, λ�(�) is monotone non-decreasing. It is well known,

(Prakasa Rao (1970); Prakasa Rao (1983); Groeneboom (1985)), that λ� can be

estimated at the n1=3 rate. Since λ j , j = 0;1 can be estimated in a much faster

rate and kG n�Gk
∞
= Op

�
n�1=2

�
, we conclude that Ĝ satisfies conditions 1. and

2.

We prove now that this is the best possible rate. It suffices to show that

there exists a sequence of distribution functions fGng with densities fgng, such

that n1=3(Gn(t)�G(t))! c1 > 0 while

p
nH (Fn;F)! c2 < ∞; (A.6)

where

H 2(Fn;F) = E

 �
f (N;λ0;λ1;gn)

f (N;λ0;λ1;g)

�1=2

�1

!2

;

the square Hellinger distance. If (??) is satisfied, then the variational distance

between the distributions of N1; : : : ;Nn under G and Gn is bounded away from

2 (Cf. Le Cam and Yang (1990) page 29).

Fix any t0. Assume that G has a density g, bounded from below by b� on

some small interval (t0� ζ; t0+ ζ), ζ > 0, and G(t0� ζ) > 0. Let 0< b< b�. Let

an > 0 be a solution of

�
2e�(λ1�λ0)ann�1=3 �e�2(λ1�λ0)ann�1=3�� �2e(λ1�λ0)n�1=3�e2(λ1�λ0)n�1=3�

= 0:

Note that the left hand side is monotone increasing as a function of an on (0;∞)

and it is equal to

(a2
n�1)(λ1�λ0)

2n�2=3+o
�
n�1�
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It follows that an is well defined and an = 1+o
�
n�1=3

�
. Let gn = g+hn, where

hn(t) =

8>>>>>>>>>><
>>>>>>>>>>:

b t0�2ann�1=3 � t < t0�ann�1=3

�b t0�ann�1=3 � t < t0+n�1=3

b t0+n�1=3 � x< t0+2n�1=3

0 elsewhere:

Finally let Hn(�) =
R �

0 hn(t)dt, Ḡ(�) =
R �

0 exp((λ1 � λ0)t)dG(t): and

H̄n(�) =
R �

0 exp((λ1�λ0)t)hn(t)dt: Note that H = H̄ = 0 outside the interval (t0�
an�1=3; t0 + ann�1=3). In particular Gn = G+Hn is a cdf, and Gn(t0 + n�1=3) =

G(t0+n�1=3)�bn�1=3. Hence we should only argue that (??) is satisfied.

First note that the likelihood ratio between Gn and G satisfies

Ln =
f (N;λ0;λ1;gn)

f (N;λ0;λ1;g)

= 1+

R 1
0 e(λ1�λ0)t�N(t) log(λ1=λ0)hn(t)dtR 1
0 e(λ1�λ0)t�N(t) log(λ1=λ0)g(t)dt

= 1+
∑N(1)

j=0 (H̄n(τ j+1)� H̄n(τ j))e� j log(λ1=λ0)

∑N(1)
j=0 (Ḡ(τ j+1)� Ḡ(τ j))e� j log(λ1=λ0)

;

(A.7)

where τ1 < � � � < τN(1) are the jump points of the point process N , and τ0 = 0,

τN(1)+1 =1. Now, by construction (H̄n(t j+1)�H̄n(t j))=(Ḡ(t j+1)�Ḡ(t j)) is positive

and bounded. Hence

��Ln�1
��� b=b�: (A.8)

Note that the numerator in the right hand side of (??) is 0 unless there is an

event in the interval [t0�2ann�1=3; t0+2n�1=3]. We can assume that the process

was generated in the following way. We start with a Poisson process N̄ with

intensity λ1 and a random time Ti . The process N i is obtained by deleting each

of the events of N̄ in the interval (0;Ti) with probability 1�λ0=λ1. Hence

P(Ln = 1)� P(An) = e�2λ1(1+an)n�1=3 (A.9)

where An is the event that N̄ has no jumps in the interval [t0� 2an�1=3; t0 +

2n�1=3].
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We can further bound the second line of (??):

��Ln�1
��� R 1

0 e(λ1�λ0)t
��hn(t)

��dt1I(Ln 6= 1)R t0�ζ
0 e� log(λ1=λ0)N̄(t0�ζ)g(t)dt

� cn�1=31I(Ln 6= 1)elog(λ1=λ0)N̄(t0�ζ);

(A.10)

for some constant c. Now, N̄ (t0�ζ) is independent of An, and exp(βN̄ (t)) has a

finite expectation. It follows from (??) and (??) that

E(Ln�1)2 � c1n�2=3�1�P(An)
�
= c2n�1 (A.11)

for some finite c1 and c2. But then

H (Fn;F) = E(L1=2
n �1)2

= E

 
Ln�1

L1=2
n +1

!2

� c3n�1

by (??) and (??). The proof is now complete. �

It may seem from the proof of Theorem ?? that N+ = ∑n
i=1N i is almost a

sufficient statistics. I.e., the estimator based on N+ is almost as good as the

best estimator based on N1; : : : ;Nn. This is not true. To make this explicit we

consider a different asymptotic. We compare now the following two models

Model M1 Let T1;T2; : : : be i.i.d. random variables with common distribution

G. Given T1; : : : ;Tn, let N1; : : : ;Nn be independent, fN i : t 2 (0;Ti)g is a

Poisson counting process with intensity mλ0, and fN i : t 2 (Ti;1)g is an

independent Poisson counting process with intensity mλ1.

Model M2 Let N1; : : : ;Nn be i.i.d. , counting processes with intensity λ(t) =

m[λ0+(λ1�λ0)G(t)].

The following proposition is intended to demonstrate the differences be-

tween these two models. It is not the strongest possible result of its kind.

Proposition A.3 Suppose G has a bounded density and λ0 and λ1 are known.
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i. Suppose n!∞, m!∞, m4=n! 0, and m5=n!∞. Then there is an estimator Ĝ of

G such that under model M1,


Ĝ�G




∞
= Op

�
n�1=2+m�2

�
, while the best estimator

of G under model M2 satisfies Ĝ�G= Op
�
(mn)�1=3

�
(point-wise). That is, G can be

estimated much faster under model M1 than it can be estimated under model M2.

ii. Suppose n! ∞ and m2=n! ∞. Then G can be estimated at a rate of n1=2 under

model M1. It can be estimated with the faster rate of (mn)1=3 under model M2 (point-

wise, and almost at that rate uniformly).

Proof.

i. Since m! ∞, Ti can be “estimated” based on N i . Let the estimator be T̂i .

Then T̂i = Ti +εi, where εi = Op
�
m�1

�
and has, asymptotically, a symmetric dis-

tribution. For example, we can take T̂i = argminfN i (t)� (λ0 + λ1)t=2g. Then

m(T̂i � Ti) has the asymptotic distribution of argminfB(t)� ��t��g, where B is a

Brownian motion with zero drift. Let G̃ be the distribution of T̂i . Then Ĝn,

the empirical distribution function of T̂1; : : : ; T̂n satisfies


Ĝ� G̃




∞
= Op

�
n�1=2

�
.

While


G̃�G




∞
= Op

�
m�2

�
(since the distribution of ε1 is, essentially, symmet-

ric). The convergence of the estimator of the monotone intensity under M2 is

standard.

ii. Even if T1; : : : ;Tn are known, then under M1, n1=2 is the best rate of conver-

gence for an estimator of G. �

A.3 MLE

The NPMLE is defined as the distribution Ĝ and parameters λ̂0 and λ̂1 (if they

exist) that maximize the expression ∑n
i=1 log f (N i ; λ̂0; λ̂1;Ĝ). Unfortunately, we

have a minor technical problem, since, as would follow from the proof of the

next proposition, if we define the processes N i to be left continuous then the

NPMLE does not exists if λ1 < λ0 and if we define it to be right continuous,

the NPMLE does not exists if λ1 > λ0. So, we prefer to give up notational

consistency, and define the processes N 1; : : : ;Nn such that log(λ̂0=λ̂1)N i is upper
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semi-continuous. Anyway, the NPMLE can be found using the EM algorithm

given in Section 3.2 .

An immediate consequence of the form of the likelihood is the following

proposition.

Proposition A.4 The MLE Ĝ of G is supported on the observed events. It has a

version with at most n+1 points.

Proof. Suppose, w.l.o.g., that λ̂1 > λ̂0. Then the MLE, Ĝ, maximizes the log-

likelihood function given by

∑
i

log
Z

e(λ̂1�λ̂0)t�Ni (t) log(λ̂1=λ̂0)dĜ(t):

Suppose that there was a mass in a tiny interval centered at a point t between

two spikes. Then by moving it to the right up to the next spike, the term

(λ̂1� λ̂0)t increases, the term N i (t) log(λ̂0=λ̂1) does not change and hence the

likelihood increases.

Let t1 < � � �< tK be the points in which at least one of the processes N 1; : : : ;Nn

has a jump, and let ĝ= (ĝ1; : : : ; ĝK)
T where ĝj is the mass of Ĝ at t j . Also, let M

be the matrix with entries Mi j = expf(λ̂1� λ̂0)t j �N i (t j) log(λ1=λ0)g, i = 1; : : : ;n,

j = 1; : : : ;K, and M0; j = 1. Then the log-likelihood function is ∑ log( fi), where

(1; f1; : : : ; fn)T = Mĝ. In other words, the likelihood depends on g only through

Mg. Hence, if K > n+1, ĝ is not uniquely defined and there is a solution with

at most n+1 entries different from 0. �

We now prove the consistency of the NPMLE of G. For simplicity we prove

it for the unrealistic case of λ0 and λ1 known. We believe that the result is

valid for the more general case where the intensities are unknown. The proof,

however, would be more complicated since the convexity argument which is

crucial to our proof is not valid for the general case.

Theorem A.5 Suppose λ1 > λ0 and both are known and that G has a bounded den-

sity. The NPMLE Ĝ is n1=3 consistent.
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Proof. To simplify the notation let φ = λ1�λ0 and ψ = log(λ1=λ0). Denote the

log-likelihood of the single observation by

`i(G) = log

 R 1
0 eφt�ψNi (t)dG(t)R 1
0 eφt�ψNi (t)dG0(t)

!
;

where G0 is the true distribution. Let `(G) be the generic random variable.

Recall the notation

Ḡ(t) =
Z t

0
eφsdG(s) = eφtG(t)�φ

Z t

0
eφsG(s)ds: (A.12)

Let τ1; : : : ;τN(1) be the jump points (if any) of the process N . The following

expressions for the numerator and denominator of `(G) will be useful:

Z 1

0
eφt�ψN(t) dG(t) =

N(1)

∑
j=0

�
Ḡ(τ j+1)� Ḡ(τ j)

�
e� jψ

= Ḡ(1)e� jN(1) +(eψ�1)
N(1)

∑
j=1

Ḡ(τ j)e
� jψ

(A.13)

Let Gn = fG :


G�G0




∞
� Ann�1=3g for some An ! ∞ slowly (all distribu-

tions considered in this discussion are supported on [0;1]). Obviously,

Ḡ� Ḡ0




∞
< (1+φ)Aneφn�1=3 for G2 Gn. Let `(G)� log

�
1+X(G)

�
where

X(G)�
R 1

0 eφt�ψN(t) (dG(t)�dG0(t))R 1
0 eφt�ψN(t) dG0(t)

It follows from (??) that For G2Gn

��X(G)
��� 2



G�G0




∞
eψN(1) � c1Ann�1=3eψN(1) : (A.14)

and

�� R 1
0 eφt�ψN(t) dG(t)R 1
0 eφt�ψN(t) dG0(t)

��� eφ+ψN(1): (A.15)

Hence

`(G) = X(G)� 1
2

X2(G)+R;

where for any ε > 0:

��R��� εX2(G)+
�
φ+ψN(1)+

��X(G)�X2(G)=2
���1I(��X(G)

��> ε): (A.16)
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The last term in (??) is negligible since by (??),
��X(G)

��> ε for any G2Gn implies

that N(1) � γ logn for some γ > 0, and for any α;β;γ;K > 0

E
n

eβN(1)1I(N(1) � γ logn)
o
�
�

λ1e
γ logn

�γ logn

� n�K ; n> n0;

since N(1) is stochastically smaller than a Poisson mean λ1 random variable.

Clearly EX(G) = 0. Hence

E`(g) =�(1+o(1))
1
2

EX2(G)+op
�
n�1� ; (A.17)

uniformly for G2 Gn. Similarly we could consider only one term in the Taylor

expansion of log(1+X(G)), to obtain that

`(G)� 1
1� ε

��X(G)
��+ �φ+ψN(1)

�
1I(
��X(G)

��> ε):

Therefore

Var`(G) = (1+o(1))EX2(G): (A.18)

This family of random variables is not bounded, but for any γ > 0

P(max
1�i�n

N i (1)< γ logn)! 1:

It follows from (??) that for any G2 Gn

P(max
G2Gn

max
1�i�n

��`i(G)
��� c1n�γ)! 1; 0< γ < 1=3:

Hence, we tactically assume that N i is bounded by γ1 logn for some γ1 > 0 and

f`i(G) : G2 Gng is bounded by n�γ2 for some 0< γ2 < 1=3.

We want to prove that supG2Gn
n�1=2

��∑n
i=1(`i(G)�E`(G))

�� is bounded in

probability. For that we want to bound the coverage number of the set Ln =

f`(G) : G 2 Gng. We actually consider a somewhat larger family of random

variables. Let

¯̀(H) = log

0
@ H(1)e� jN(1) +(eψ�1)∑N(1)

j=1 H(τ j)e� jψ

Ḡ0(1)e� jN(1) +(eψ�1)∑N(1)
j=1 Ḡ0(τ j)e� jψ

1
A
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for H 2 Hn � fH : H is monotone non-decreasing:


H� Ḡ0




∞
< 2Ann�1=3g. Let

L̄n = f ¯̀(H) : H 2 Hng. Note that Ln � L̄n since `(G) = ¯̀(Ḡ). However, L̄n is

strictly larger, since
R

e�φt dḠ(t) = 1 for any G2Gn, and there is no such restric-

tion on members of Hn. Now, it is easy to approximate the family L̄n. Define

for any H 2Hn

Hη(t) = η
�
H(ηdt=ηe)=η

�
; t 2 [0;1]

where for every real x, dxe is the smallest integer not smaller than x. That

is, Hη is a step-wise approximation of H , with jumps at multiples of η and

values which are multiples of η. Clearly, kHη�Hk
∞
� η. The number of such

functions Hη is, at most η�2. Recall that we consider N i (1) to be bounded by

γ logn for any γ. Hence



 ¯̀(Hη)� ¯̀(H)




∞
� cηnγ:

Hereafter, c and γ are positive finite constants. Let Yi(H) = n1=3�γ ¯̀(H). Then��Yi

�� � 1: Let H �
n be any subset Hn, and let σ�2

n = supH2H �

n
Var( ¯̀(H)). Then ν2

n =

maxH2H �

n
Var(Y(H))� n2=3�2γσ�2

n . Let

In =
Z t

s
E1=2

n (u)du;

where En(u) = logNn(u) is the log of the smallest number of random variables

Y(H1); : : : ;Y(HNn(u)), such that supH2Hn
mink

��Y(H)�Y(Hk)
��< u. In our case

En(u) = logc+ γ logn�2logu:

The relevant range of u in the above integral is shrinking to 0, hence, In ! 0. It

follows from Theorem 2.1 of Alexander (1984) that

P

 
max
H2H �

n

�� n

∑
i=1

�
¯̀i(H)�E ¯̀(H)

����Mσ�
n

p
n

!
� K1e

�K2M2
(A.19)

for all ε < M < n1=3�γ and some K1 and K2 which do not depend on M or n.

In Theorem ?? we proved that it is possible to estimate G at the n1=3 rate.

This implies that for any Mn ! ∞

nsupfE`(G) :


G�G0




∞
> Mnn�1=3g! �∞; (A.20)
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since, otherwise, there was a sequence Gn, n1=3


Gn�G0




∞
! ∞ and the sum of

errors of the Neyman-Pearson test between Gn and G0 converges to 1, contra-

dicting Theorem ?? .

Let now

G�
n = fG : E`(G)��an=ng :

for some an ! ∞. It follows from (??) that G�
n � Gn (for appropriate sequences

An and an). Comparing (??) to (??), we obtain that

nσ�2
n =2an ! 1;

where

σ�2
n � supfVar`(G) : G2G�

ng :

Finally,

P

 
sup

G2∂G�

n

n

∑
i=1

`i(G)� 0

!
= P

 
sup

G2∂G�

n

n

∑
i=1

(`i(G)�E`(G))� an

!

� P

 
sup

G2∂G�

n

n

∑
i=1

(`i(G)�E`(G))�
p

an=4σ�
n

p
n

!

� K1e�K2an=4 ! 0:

Since `(G0)� 0 and ∑n
i=1`(G) is concave in G, we obtain that all its maxima are

inside G�
n and are n1=3 continuous. �

A.4 Testing

In this section we discuss how a formal test for the existence of a change point

versus no change occurs in the relevant interval can be devised. The purpose

tests are not the tests used in the examples of this paper. In all the example

simple minded, ad-hoc tests were powerful enough to reject the null assump-

tion and establish the existence of change points. Consider the hypotheses

H0: the process fN(t); t 2 (0;1)g is a homogeneous Poisson process, versus H1:
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for some random time T 2 (0;1) with cdf G, the intensity is λ0 on (0;T) and

intensity λ1 on (T;1). We could base our test statistic directly on (??). We pre-

fer, however, to motivate the test statistic from a different perspective. If we

assume that T = t, then an asymptotic efficient test would be a t-test based on

(N(1)�N (t))=(1�t)�N (t)=t. Since the change point is not known, we consider

a test statistic which is a weighted sum of such statistics:

Wα =

Z 1

0
t(1� t)

�
N(1)�N(t)

1� t
� N(t)

t

�
dα(t)

=

Z 1

0

�
tN(1)�N(t)

�
dα(t);

where α is a probability measure on [0;1]. Now,

E(Wα
�� T) =

Z 1

0
t(1� t)

��
λ1� λ0T +λ1(T�s)

t

�
1I(T � t)

+

�
λ0(T� t)+λ1(1� t)

1� t
�λ0

�
1I(T > t)

�
dα(t)

= (λ1�λ0)

Z 1

0
[(1� t)T1I(T � t)+(1� t)(1�T)1I(T > t)] dα(t)

Therefore:

EWα = (λ1�λ0)

Z 1

0

�
(1� t)

Z t

0
sdG(s)+ t

Z 1

t
(1�s)dG(s)

�
dα(t): (A.21)

In particular E(Wα) = 0 under H0. Now, under H0, if s� t

cov
�
sN(1)�N(s); tN(1)�N(t)

�
= λ0s(1� t):

Therefore,

Var(Wα) = 2λ0

Z 1

0

Z t�

0
s(1� t)dα(s)dα(t)+∑ t(1� t)

�
α(t)�α(t�)

�2

=
Z 1

0

�
(1� t)

Z t+

0
sdα(s)+ t

Z 1

t+
(1�s)dα(s)

�
dα(t):

(A.22)

We look for the weight function α that maximizes the ratio of the expectation

of Wα (under H1) to its standard deviation (under H0). It is straight forward to

check that the optimal α equates the two terms within the square brackets in

equations (??) and (??). That is, α = G.
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We reached the following test statistic

Sn(G) =

 
n

∑
i=1

N i (1)

!�1=2 n

∑
i=1

�Z 1

0
N i (t)dG(t)�N i (1)

Z 1

0
t dG(t)

�

Let N+(�) = ∑n
i=1N i (�). Then

Sn(G) = N
�1=2
+ (1)

Z 1

0

�
N+(t)� tN+(1)

�
dG(t):

Denote W n(t) � N
�1=2
+ (1)

�
N+(t)� tN+(1)

�
. Then W n converges weakly under

H0 to a Brownian bridge, since N+(�) is a homogeneous Poisson process under

H0.

Typically, the distribution G is not known. We can proceed in a num-

ber of ways. The simplest is to maximize Sn(G) over G. We arrive at the

statistic maxG
��Sn(G)

��=maxt
��W n(t)

��which is distributed asymptotically like the

Kolmogorov-Smirnov statistic.

Alternatively, one may wish to maximize power against an alleged distri-

bution. That is, he may consider Sn(G0), where G0 may be an a priori specified

distribution function. The following theorem shows that Sn(G0) has power

against all alternatives G, whether G0 was specified correctly or not. It is opti-

mal when the right distribution of the change point is actually G0. It is close to

optimal if the right distribution is close to G0. Hence, Sn(G0) is the reasonable

test statistic, if one has a pre-specified direction towards which he wants to

maximize the power of his test.

In the following theorem we are using the notation of Section ?? .

Theorem A.6 Let H0 be the hypothesis that δ = 0 and Hn the alternative that δ = δn,

where n= 1;2; : : : and
p

nδn ! δ0. Consider a sequence of models with fixed G, λ =

λ�+ν and δ as above. Then:

1. Suppose that H0 holds. Then Sn(G0) has mean zero and variance V(G0) =

2
R 1

0

R t
s s(1� t)dG0(s)dG0(t)�∑g2

0 j t j(1� t j ), where G0 has point mass g0 j at

t j .
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2. Suppose that hypothesis Hn holds for sample size n. Then Sn(G0) is asymptoti-

cally normal with the same variance as above and mean

�2λ�1=2
0

Z 1

0

Z 1

0
(s^ t)(1�s_ t)dG0(s)dG(t):

Proof. Assume H0 holds. The first part follows since N+(�) is a simple Poisson

process and for s< t:

E

�
(N+(s)�sN+(1)) (N+(t)� tN+(1))

N+(1)

���� N+(1)
�

= s(1� t):

Assume now that Hn holds. The family of distributions defined by the se-

quence Hn is contiguous to H0. Now, Sn(G0) is asymptotically equivalent to the

statistic

S̃n(G0) = (λn)�1=2
n

∑
i=1

Z 1

0
(N i (t)� tN i (1))dG0(t)

� n�1=2
n

∑
i=1

si(G0):

Since, under H0, (S̃n(G0);∑n
i=1`

�
δjν;G(N i )) has asymptotically binormal distribu-

tion, we obtain that S̃n(G0) has, under Hn, asymptotically normal distribution

with the variance as under H0 and mean given by

δ0E
�
si(G0)`δjν;G(N1)

�
= δ0λ�3=2

Z 1

0

Z 1

0
(N1(s)�sN1(1))(N1(1)�2N1(t))dG0(s)dG(t)

=�2δ0λ�1=2
Z 1

0

Z 1

0
(s^ t)(1�s_ t)dG0(s)dG(t):

�

If we compare the two alternatives suggested so far, we conclude that al-

though the process fSn(G) : G2Gg is tight, whatever the set G is, the distribu-

tion of Sn(G) depends on whether G is pre-specified or data dependent.

Another alternative is to try to estimate G. We consider a cross-validation

version of the statistic. Let Ĝ(�i) be an estimator of G based on all trial except

for the i-th trial. Define si by

si =

Z 1

0

�
tN i (1)�N i (t)

�
dĜ(�i)(t):
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Finally, let

SCV
n =

n

∑
i=1

si :

Note that in particular ESCV
n = 0 under H0, and it is different from zero under

H1.
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Captions list:

Figure 1 : The spiking activity of a GPe cell. The monkey released the central key at

time 0.

(a) The raster plot;

(b) The PSTH;

(c) The PSTH smoothed and a monotone regression estimate of intensity.

Figure 2 : Change point distribution of the single cell described in Figure 1.

(a) The MLE p.d.f.;

(b) The MLE c.d.f. (stars) compared to the c.d.f. as estimated by the monotone

regression of the PSTH (solid line).

Figure 3 : One GPe cell with seemingly two change points.

(a) Raster plot;

(b) PSTH.

Figure 4 : One GPe cell with two dependent change points.

(a) The estimated distribution of the first change point (0 is the RELEASE time);

(b) Estimated distribution of the time between the two change points.

Figure 5 : Two GPe cells.

(a) raster plot;

(b) The PSTH’s for the two cells;

(c) Smoothed PSTH’s.

Figure 6 : Two GPe cells with seemingly one change point.

(a) MLE of p.d.f. of the change point;

(b) Cell 9: MLE of the c.d.f, and the estimated based on the monotone regres-

sion;

(c) Cell 13: MLE of the c.d.f, and the estimated based on the monotone regres-

sion;



Figure 7 : Simulated data:

(a) The raster plot;

(b) PSTH;

(c) Smoothed PSTH.

Figure 8 : Simulated data: Histogram of the actual time of the change points and

their estimates (stars).

(a) First change point;

(b) Second change point;

(c) Third change point;

Figure 9 : Simulated data: Actual times of the change point times and their a posteri-

ori mean. The trials are ordered according to the time of the change point. The

actual times are given by the solid time as function of the trial number. The

opened circles are the a-posteriori expectation.
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Interval: (0;τ1) (τ1;τ2) (τ2;τ3) (τ3;1)

First process: 41.5 (40) 56.2 (60) 37.6 (40) 39.7 (40)

Second process: 9.9 (10) 47.9 (50) 48.0 (50) 31.4 (30)

Table 1: Simulation: estimates and true intensities (in spikes per second)


