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Abstract

In EM and related algorithms, E-step compu-
tations distribute easily, because data items
are independent given parameters. For very
large data sets, however, even storing all
of the parameters in a single node for the
M-step can be prohibitive. We present a
framework which exploits parameter spar-
sity to fully distribute the entire EM proce-
dure. Each node interacts with only the sub-
set of parameters relevant to its data, send-
ing messages to other nodes along a junction-
tree topology. We demonstrate the effective-
ness of our framework over a MapReduce ap-
proach (Dean & Ghemawat, 2004; Chu et al.,
2006), on two tasks: word alignment (Brown
et al., 1994) for machine translation, and
LDA (Blei et al., 2003) for topic modeling.

1. Introduction

As data sets become increasingly large, the question
of how machine learning algorithms scale becomes in-
creasingly important. Many computations, such as the
calculation of expectations in the E-step of the EM al-
gorithm, decompose in obvious ways, allowing effective
use of parallelism. In some such cases, the MapReduce
framework (Dean & Ghemawat, 2004) is appropriate
and sufficient (Chu et al., 2006). Specifically, MapRe-
duce is suitable when its centralized reduce operation
can be carried out efficiently, which is not always the
case. For example, in modern machine translation sys-
tems, many millions of words of example translations
are aligned using unsupervised models trained with
EM (Brown et al., 1994). In this case, one quickly gets
to the point where no single compute node can store
the model parameters for all of the data at once, and
the communication required for a centralized reduce
operation dominates computation time. Common so-
lutions in practice are to limit the total training data
or process manageable chunks independently. Either

way, the complete training set is not fully exploited.

In this paper, we propose a novel, general framework
for distributing EM and related algorithms in which
not only is the computation distributed, as in the
map phase of MapReduce, but the storage of parame-
ters and expected sufficient statistics is also fully dis-
tributed. No single node needs to store or manipu-
late all of the data or all of the parameters. We de-
scribe a range of network topologies and discuss the
tradeoffs between communication bandwidth, commu-
nication latency, and per-node memory requirements.
In addition to a general presentation of the frame-
work, we present experiments in two application cases:
word alignment for machine translation (using stan-
dard EM) and topic modeling with LDA (using varia-
tional EM). Finally, we show empirical results on the
scale-up of our method, for several topologies.

2. Expectation Maximization

Although our framework is more broadly applicable,
we focus on the EM algorithm (Dempster et al., 1977),
a technique for finding maximum likelihood param-
eters of a probabilistic model with latent or hidden
variables. In this setting, each datum di consists of a
pair (xi, hi) where xi is the set of observed variables
and hi are unobserved. We assume a joint model over
P (xi, hi|θ) with parameters θ. Our goal is to find a
θ that maximizes the marginal observed log-likelihood∑m
i=1 logP (xi|θ). Each iteration consists of two steps:

qi(hi)← P (hi|xi, θ) [E-Step]

θ ← arg max
θ

m∑
i=1

Eqi
P (xi|hi, θ) [M-Step]

where the expectation in the M-Step is taken with
respect to the distribution q(·) over the latent vari-
ables found in the E-Step. When P (·|θ) is a mem-
ber of the exponential family, the M-Step reduces to
solving a set of equations involving expected sufficient
statistics under the distribution. The E-Step there-
fore consists of collecting expected sufficient statistics
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∅ S1 S2 ... Sm
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Figure 1: IBM Model 1 word alignment model. The top
sentence is the source, and the bottom sentence is the tar-
get. Each target word is generated by a source word de-
termined by the relevant alignment variable.

η = EθP (η|X) with respect to qi for each datum xi.
We briefly present the two EM applications we use for
experiments.

2.1. Word Alignment

Word alignment is the task of aligning words in a cor-
pora of parallel sentences (Brown et al., 1994). Each
parallel sentence pair consists of a source sentence S
and its translation T into a target language.1 The
model we present here is known as the IBM Model 1
(Brown et al., 1994) (see figure 1 for an illustration).2

In this model, each word of T is generated from some
word of S or from a null word ∅ prepended to each
source sentence. The null word allows words to ap-
pear in the target sentence without any evidence in
the source. Model 1 is a mixture model, in which each
mixture component indicates which source word is re-
sponsible for generating the target word (see figure 1).

The formal generative model is as follows: (1) Select
a length n for the translation T based upon |S| = m
(typically uniform over a large range). (2) For each
j = 1, . . . , n, uniformly choose some source alignment
position Aj ∈ {0, 1, . . . ,m}. (3) For each j = 1, . . . , n,
choose target word Tj based on source word SAj with
probability θSAj

Tj

In the data that we are given, the alignment variables
a are unobserved, and the parameters are the multi-
nomial distributions θs· for each source word s. The
expected sufficient statistics are expected alignment
counts between each source and target word that ap-
pear in a parallel sentence pair. These expectations
can be obtained from the posterior probability of each

1Sometimes in the word alignment literature the roles
of S and T are reversed to reflect the decoding process.

2Although there are more sophisticated models for this
task, our concern is with efficiency in the presence of many
parameters. More complicated models do not contain sub-
stantially more parameters.

N

M

θt·

ζ z wφ

t
ψ

Figure 2: Latent Dirichlet Allocation Model. Each word
is generated from a topic vocabulary distribution and each
topic is generated from a document topic distribution.

alignment,

P (aj = i|S, T, θ) =
θsitj∑
i′ θsi′ tj

The E-Step computes the above posterior for each
alignment variable; these values are added to the cur-
rent expected counts of (s, t) pairings, denoted by ηst.
The M-Step consists of the following update,

θst ←
ηst∑
t′ ηst′

Section 5.1 describes results for this model on a data
set with more than 243 million parameters (i.e., unique
co-occuring word pairs).

2.2. Topic Modeling

We present experiments in topic modeling via the La-
tent Dirichlet Allocation (Blei et al., 2003) topic model
(see figure 2). In LDA, we fix a finite number of topics
T and assume a closed vocabulary of size V . We as-
sume that each topic t has a multinomial distribution
θt· ∼ Dirichlet(Unif(V ), α). Each document draws its
own topic distribution ψ ∼ Dirichlet(Unif(T )), γ). For
each word position in a document, we draw an unob-
served topic index z from ψ and then draw a word w
with probability θz·.3

Our goal is to find the MAP estimate of θ for the
observed likelihood where the latent topic indicators
and document topic distributions ψ have been inte-
grated out. In this setting, we can not perform an
exact E-Step because of the coupling of latent vari-
ables through the integral over parameters. Instead,
we use a variational approximation of the posterior as
outlined in Blei et al. (2003), where all parameters
and latent variables are marginally independent. The
relevant expected sufficient statistics for θ are the ex-
pected counts ηtw over topic t and word w pairings
under the approximate variational distribution. The

3We fix α = γ = 1.0.
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M-Step, as in the case of our word alignment model in
section 2.1, consists of normalizing these counts,

θtw =
ηtw∑
w′ ηtw′

Section 5.2 describes results for this model. We note
that the number of parameters in this model is a linear
function of the number of topics T .

3. Distributing EM

Given the amount of data and number of parameters
in many EM applications, it is worthwhile to distribute
the algorithm across many machines. Indeed, we will
consider the setting in which we have partitioned our
data set D into k splits {D1, . . . ,Dk}.

3.1. Distributing The E-Step

Distributing the E-Step is relatively straightforward,
since the expected sufficient statistics for each datum
can be computed independently given a current esti-
mate of the parameters. Each of k nodes computes
expected sufficient statistics for one split of the data,

η(i) = Eθ [η|Di] [Distributed E-Step]

where we use the superscript (i) to emphasize that
these counts are partial and reflect only the contribu-
tions from split Di and not contributions from other
partitions. We will also write αi for the set of suffi-
cient statistic indices that have nonzero count in η(i),
and use η[αi] to indicate the projection of η onto the
subspace consisting of just those statistics in αi.

In order to complete the E-Step, we must aggregate
expected counts from all partitions in order to re-
estimate parameters. This step involves distributed
communication between compute nodes of a poten-
tially large number of statistics. We call this phase
the C-Step and will examine how to efficiently per-
form it in section 4. For the moment, we assume that
there is a single computing node which accumulates
all partial sufficient statistics,

η =
k∑
i=1

η(i)[αi] [C-Step]

where we write η(i)[αi] to indicate that we only com-
municate non-zero counts. Since the E-Step is usually
more computationally intensive than the M-Step, this
technique is a simple and effective way to achieve near
linear speed up in the E-Step and previous work (Blei
et al., 2003; Chu et al., 2006; Nowak, 2003) has utilized
it effectively.

3.2. Distributing the M-Step

A possibility, which to our knowledge has not been
fully exploited, is distributing the M-Step. Often in
EM, it is the case that only a subset of parameters
may ever be relevant to a split Di of the data. For
instance, in the word alignment model of section 2.1,
if a word pairing (s, t) is not observed in some Di, node
i will never need the parameters θst. For our full word
alignment data set, when k = 20, less than 30 million
of the 243 million total parameters are relevant to each
node.

We will use βi to refer to the subset of parameters
indices relevant for Di. In order to distribute the
M-Step, each node must receive all expected counts
necessary to re-estimate all relevant parameters θ[βi].
In section 4, we will develop different schemes for
how nodes should communicate their partial expected
counts, and show that the choice of how the C-Step is
executed can dramatically affect the efficiency of dis-
tributed EM.

One difficulty in distributing the M-Step lies in the fact
that re-estimating θ[βi] may require counts not found
in η[αi]. In the case of the word alignment model, θst
requires the counts ηst′ for all t′ appearing with s in
a sentence pair, even if t′ did not occur in Di. Often
these non-local statistics enter the computation only
via normalization terms. This is the case for the word
alignment and LDA models explored here. This obser-
vation suggests an easy way to get around the problem
presented above in the case of discrete latent variables:
we simply augment the set of sufficient statistics η with
a set of redundant sum terms that provide the missing
information needed to normalize parameter estimates.
For the word alignment model, we would include a suf-
ficient statistic ηs· to represent the sum

∑
t:(s,t)∈D ηst.

Then the re-estimated value of θst would simply be
ηst

ηs·
. With these augmented statistics, estimating θ[βi]

requires only ηst and ηs· for all (s, t) ∈ Di. It might
seem counterintuitive, but adding these extra statis-
tics actually decreases the total necessary amount of
communication, by trading a large number of sparse
statistics for a few dense ones.

4. Topologies for Distributed EM

This section will consider techniques for performing
the C-Step of distributed EM, in which a node i ob-
tains the necessary sufficient statistics η[αi] to esti-
mate parameters θ[βi]. We assume that the sets of
relevant count indices αi have been augmented as dis-
cussed at the end of section 3 so that η[αi] is sufficient
to re-estimate θ[βi].
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Figure 3: (a) MapReduce: Each node computes partial statistics in a local E-Step, sends these to a central “Reduce” node,
and receives back completed statistics relevant for completing its local M-Step. (b) All-Pairs: Each node communicates
to each other node only the relevant partial sufficient statistics. For many applications, these intersections will be small.
(c) Junction Tree: The network topology is a tree, chosen heuristically to optimize any desired criteria (e.g., bandwidth).

4.1. MapReduce Topology

A straightforward way to implement the C-Step is to
have each node send its nonzero partial counts η(i)[αi]
to a central “Reduce” node for accumulation into η.
This central node then returns only the relevant com-
pleted counts η[αi] to the nodes so that they can in-
dependently perform their local M-Steps. This ap-
proach, depicted in figure 3(a), is roughly analogous
to the MapReduce framework (Dean & Ghemawat,
2004). When parameters are numerous, this will be
more efficient than a naive MapReduce approach, in
which the Reduce node would perform a global M-
Step and then send all of the new parameters θ back
to all nodes for the next iteration. To enable sending
only relevant counts η[αi], the actual iterations are
preceded by a setup phase in which each node con-
structs an array of relevant count indices αi and sends
this to the Reduce node. This array also fixes an or-
dering on relevant statistics, so that later messages of
counts can be dense.

This MapReduce topology may be a good choice for
the C-Step when all nodes share many of the same
statistics. On the other hand, if sufficient statistics
are sparse and numerous, the central reduce node(s)
can be a significant bandwidth and memory bottleneck
in the distributed EM algorithm.

4.2. All Pairs Topology

MapReduce takes a completely centralized approach to
implementing the C-Step, in which the accumulation
of η at the Reduce node can be slow or even infeasi-
ble. This suggests a decentralized approach, in which
nodes directly pass relevant counts to one another and
no single node need store all of η or θ. This section de-
scribes one such approach, All Pairs, which in a sense

represents the opposite extreme from MapReduce. In
All Pairs, the network graph is a clique on the k nodes,
and each node i passes a message mij = η(i)[αi∩αj ] to
each other node j containing precisely the statistics j
needs and nothing more (see figure 3(b)). Each node j
then computes its completed set of sufficient statistics
with a simple summation:

η[αi] = η(i) +
∑
j 6=i

mji

= η(i) +
∑
j 6=i

η(j)[αi ∩ αj ]

All Pairs requires a more complicated setup phase,
where each node i calculates, for roughly half of the
other nodes, the intersection αi ∩ αj of its parame-
ters with the other node j’s.4 Node i then sends the
contents of this intersection to j, fixing the order of
statistics so that later messages can be dense.

In each iteration, message passing proceeds asyn-
chronously, and each node begins its local M-Step as
soon as it has finished sending and receiving the neces-
sary counts. An important point is that to avoid dou-
ble counting, a received count cannot be folded into a
node’s local statistics until the local copy of that count
has been incorporated into all outgoing messages.

All Pairs is attractive primarily because it lacks the
bandwidth bottleneck of MapReduce, but also because
all paths of communication are only one hop long, and
each node need only be concerned with precisely those
statistics relevant for its local E- and M-steps.

On the down side, All Pairs needs a full crossbar con-
4Note that the C-Step time is now sensitive to how our

data is partitioned. An interesting area for future work is
intelligently partitioning the data so that data split inter-
sections are small.
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nection between nodes, and may require unnecessarily
high bandwidth for dense sufficient statistics that are
relevant to datums on many different nodes. In par-
ticular, a statistic that is relevant to k′ nodes must
be passed k′(k′− 1) times, as compared to an optimal
value of 2(k′ − 1) (see section 4.3).

4.3. Junction Tree Topology

This section presents a third, more flexible class of
topologies for implementing the C-Step, which can
avoid the bandwidth bottleneck of MapReduce and the
bandwidth explosion of All Pairs. In this approach, the
k nodes are embedded in an arbitrary tree structure
T , and messages are passed along the edges in both di-
rections (see figure 3(c)). As our terminology suggests,
this approach closely resembles the junction tree ap-
proach used for belief propagation in graphical models
(Pearl, 1988), which Paskin et al. (2004) implement
in the context of distributed sensor networks.5

To motivate the Junction Tree approach to EM, we will
first describe the most bandwidth-efficient method for
communicating partial results about a single sufficient
statistic, and then show how this can be extended to
produce an algorithm that works for the entire C-Step.
Consider a single sufficient statistic ηx (e.g. some ηst
for Model 1) which is only relevant to E- and M-Steps
on some subset of machines S. Before the C-Step,
each node has η(i)

x , and after communication each node
should have ηx =

∑
i∈S η

(i)
x .

We cannot hope to accomplish this goal by passing
fewer than 2(|S|−1) pairwise messages; clearly, it must
take at least |S| − 1 messages before any node com-
pletes its counts, and then another |S| − 1 messages
for each of the other |S| − 1 nodes to complete theirs
too. This is fewer messages than either MapReduce or
All Pairs passes.

This theoretical minimum bandwidth can be achieved
by embedding the nodes of S in a tree. After desig-
nating an arbitrary node as the root, each node accu-
mulates a partial sum from its subtree and then passes
it up towards the root. Once the root has accumu-
lated the completed sum ηx, it is recursively passed
back down the tree until all nodes have received the
completed count, for a total of 2(|S| − 1) messages.

Of course, each node must obtain a set of complete rel-
evant statistics η[αi] rather than a single statistic ηx.
One possibility is to pass messages for each sufficient

5Although the use of the junction tree in Paskin et al.
(2004) is similar to ours, the context and application are
different. They perform inference in a graphical model
whereas we perform distributed parameter estimation.

statistic on a separate tree; while this represents the
bandwidth-optimal solution for the entire the C-step, in
practice the overhead of managing 240 million different
message trees would likely outweigh the benefits.

Instead, we can simply force all statistics to share the
same global tree T . In each iteration we proceed much
as before, designating an arbitrary root node and pass-
ing messages up and then down, except that now the
message mij from node i to j conveys the intersec-
tion of their relevant statistics αi ∩ αj rather than a
single number. For this to work properly, we require
that T has the following running intersection property:
for each sufficient statistic, all concerned nodes form a
connected subtree of T . In other words, for all triples
of nodes (i, x, j) where x is on the path from i to j,
we must have (αi ∩ αj) ⊆ αx. We can assume that
this property holds, by augmenting sets of statistics at
interior nodes if necessary.

When the running intersection property holds, the
message contents can be expressed as

mij = η(Ti)[αi ∩ αj ] towards root
mji = η[αi ∩ αj ] away from root

where Ti is used to represent the subtree rooted at
i, and η(Ti) is the sum of statistics from nodes in this
subtree. Thus, the single global message passing phase
can be thought of as a |α| separate single-statistic mes-
sage passing operations proceeding in parallel, where
the root of each such sub-phase is the node in its sub-
tree closest to the global root, and irrelevant opera-
tions involving other nodes and statistics can be ig-
nored. In our actual implementation, we instead use
an asynchronous message-passing protocol common in
probabilistic reasoning systems (Pearl, 1988), which
avoids the need to designate a root node in advance.

The setup phase for Junction Tree proceeds as follows:
(1) All pairwise intersections of statistics are computed
just as in All Pairs, and then saved to shared disk. (2)
An arbitrary node chooses a directed, rooted tree T
on the nodes which optimizes some criteria, and then
informs the workers of the chosen topology. (3) Each
node (except for the root) constructs the set of statis-
tics that must lie on its incoming edge, by taking the
union of the intersections of statistics (which can be
reread from disk) for all pairs of nodes on opposite
sides of the edge.6 (4) Each node passes the con-
structed edge set along its incoming edge, fixing the
message structures in the process. (5) Each node pos-
sibly augments its αi to include all statistics in local
outgoing messages, thus enforcing the running inter-

6More efficient algorithms are possible, but they require
more memory.
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section property.

To choose a heuristically good topology, we use the
maximum spanning tree (MST) with edge weights
equal to the sizes of the intersections |αi∩αj | , so that
nodes with more shared statistics tend to be closer to-
gether. This heuristic has been successfully used in the
graphical models literature (Pearl, 1988) to construct
junction trees. However, in general one can imagine
much better heuristics that also consider, e.g., max
degree, tree diameter or underlying network structure.

If statistics tend to be well-clustered within and be-
tween nodes, we can expect this MST to require less
bandwidth than either alternate topology, and (like
All-Pairs) there should be no central bandwidth bot-
tleneck. On the other hand, if statistics tend to be
shared between only a few nodes and this sharing is
not appropriately clustered, bandwidth and memory
may increase because many statistics will have to be
added to enforce the running intersection property.7

Furthermore, if the diameter of the tree is large, addi-
tional latency may be introduced as many sequential
message sending and incorporation steps will have to
be performed. Finally, the setup phase takes longer
because choosing the tree topology and enforcing the
running intersection property may be expensive. De-
spite these potential drawbacks, in section 5 we will see
that MST generally performs best of the three topolo-
gies investigated here in terms of both bandwidth and
total running time.

As a final note, notice that if T is a “hub and spoke”
graph, and the hub’s statistics are augmented to con-
tain all of η, a version of MapReduce is recovered as
a special case of Junction Tree. This is the version of
MapReduce we actually implemented; it differs from
the version described in section 4.1 only in that the role
of reduce node is assigned to one of the workers rather
than a separate node, which helps save on bandwidth.

5. Experiments

We performed experiments using the word alignment
model from section 2.1 and the LDA topic model from
section 2.2. For each of these models, we compared
the network topologies used to perform the C-Step and
how they affect the overall efficiency of EM. We im-
plemented the following topologies (described in sec-
tion 4): MapReduce, All Pairs, and Junction Tree.
Although our implementation was done in Java, ev-
ery reasonable care was taken to be time and mem-
ory efficient in our choice of data structures and in

7This could be avoided by using different trees for dif-
ferent sets of statistics; we leave this for future work.

network socket communication. All experiments were
performed on a cluster of computers, where each indi-
vidual node is a 3.0GHz Intel machine that had little
to no load so that the running times are comparable.
When running times per iteration are reported they
represent the median over 10 iterations of the maxi-
mum time on any node. We also examine the band-
width of each topology measured by the number of
counts which must be communicated across the net-
work since this might be a concern depending on the
nature of the network.

5.1. Word Alignment Results

We performed Model 1 (see section 2.1) experiments
on the UN Arabic English Parallel Text TIDES Ver-
sion 2 corpus, which consists of about 3 million sen-
tences of translated UN proceedings from 1994 until
2001.8 For the full data set, there are more than 243
million unique parameters.

In table 1(a), we present results where the number
of sentence-pair datums per node is held constant at
145K and the number of nodes (and thus total training
data) is varied. For 10 or more nodes, MapReduce
runs out of memory due to the number of statistics
that must be stored in memory at the Reduce node.9

This is denoted by * in table 1(a). In contrast, both
All Pairs and Junction Tree complete training for the
full data set distributed on 20 nodes.

We also experimented with the setting where we fix
the total amount of data at 200K sentences, but add
more nodes to distribute the work. Figure 4 gives
iteration times for all three topologies broken down
according to E-, C-, and M-Steps. The MapReduce
graph (figure 4(a)) shows that the C-Step begins dom-
inating run time as the number of nodes increases.
This effect reduces the benefit from distributing EM
for larger numbers of nodes. Both All Pairs and Junc-
tion Tree have substantially smaller C-Steps, which
contributes to much faster per-iteration times and also
allows larger number of nodes to be effective.

On the full dataset, Junction Tree outperforms All
Pairs, but not by a substantial margin. Although
the two topologies have roughly comparable running
times, they have different network behaviors. Fig-
ure 5, which displays the bandwidth usage in number
of counts transferred over the network, shows that All
Pairs uses substantially more bandwidth compared to

8LDC catalog no.:LDC2004E13. See http://
projects.ldc.upenn.edu/TIDES/index.html.

9This issue could be sidestepped by using multiple Re-
duce nodes; however, the fundamental inefficiency of the
MapReduce approach would remain.
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Figure 4: Speedup of median iteration time for three topologies as a function of # of nodes, training Model 1 on 200k
total sentence pairs. Time for each iteration is broken down into E-, C-, and M-Step time. The M-Step is present but
difficult to see due to its brevity.
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either MapReduce or Junction Tree. This is due to the
O(k2) number of messages sent per iteration. In con-
trast, Junction Tree typically has a higher latency due
to the fact that nodes must wait to receive messages
before they can send their own. All Pairs and Junction
Tree with the MST heuristic represent a bandwidth
and latency tradeoff, and the choice of which to use
depends on the properties of the particular network.

5.2. Topic Modeling Results

We present results for the variational EM LDA topic
model presented in section 2.2. Our results are on
the Reuters Corpus Volume 1 (Lewis et al., 2004).
This corpus consists of 804,414 newswire documents,
where all tokens have been stemmed and stopwords
removed.10 There are approximately 116,000 unique
word types after pre-processing. The number of pa-
rameters of interest is therefore 116,000T , where T is
the number of topics that we specify.

10We used the processed version of the corpus provided
by Lewis et al. (2004).
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Figure 6: Median iteration time for three topologies, as a
function of # of topics, training on LDA with 20 nodes and
all 804k documents.

We experimented with this model on the entire corpus
and varied the number of topics in the model. The
largest number of topics we used was T = 1, 000, which
yields 116 million unique parameters. Our results on
iteration time are presented in figure 6. Note that the
number of parameters depends linearly on the number
of topics, which can roughly be seen in figure 6. This
figure demonstrates that the efficiency of the All Pairs
and Junction Tree topologies as the number of param-
eters increases. We see that Junction Tree edges out
All Pairs for a larger number of topics.

Table 1(b) shows detailed results for the experiment
depicted in figure 6. Besides the difference in itera-
tion times for the three algorithms as the number of
topics (and statistics) grows, there are at least two
other salient points. First, while the number of to-
tal statistics grows similarly to in the word alignment
experiments, here the number of unique statistics is
significantly smaller (i.e., each statistic, on average, is
relevant to more nodes). This leads to significantly
worse performance, especially in terms of bandwidth,
for All Pairs. A second point is that setup times are
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Model 1, 145k sentence pairs per node LDA, all 804k documents, 20 nodes
# nodes 1 2 5 10 20
# Unique Stats (in M) 29.37 47.84 90.58 147.65 243.01
# Total Stats (in M) 29.37 58.18 146.96 297.30 597.95
Opt Bandwidth (M of stats) 0.00 20.68 112.76 299.31 709.88

MapReduce
Setup Time (s) 138.37 185.01 458.72 * *
E-Step Time (s) 149.66 177.73 196.45 * *
C-Step Time (s) 0.002 8.41 282.43 * *
M-Step Time (s) 3.18 5.48 10.65 * *
Iteration Time (s) 152.85 191.62 489.54 * *
Max Hops 0 2 2 * *
Bandwidth (M of stats) 0.00 58.75 233.18 * *
Bottleneck (M of stats) 0.00 58.75 233.18 * *

All Pairs
Setup Time (s) 138.37 262.98 332.52 584.08 1003.11
E-Step Time (s) 149.66 163.37 166.99 168.66 204.63
C-Step Time (s) 0.002 2.91 17.64 56.51 594.18
M-Step Time (s) 3.18 3.43 3.53 3.49 3.61
Iteration Time (s) 152.85 169.71 188.16 228.66 802.43
Max Hops 0 1 1 1 1
Bandwidth (M of stats) 0.00 20.68 207.64 915.35 3615.97
Bottleneck (M of stats) 0.00 10.34 42.13 93.68 189.04

Junction Tree
Setup Time (s) 138.37 262.98 393.77 868.22 2392.72
E-Step Time (s) 149.66 163.37 167.32 196.00 222.14
C-Step Time (s) 0.002 2.91 24.73 51.89 536.80
M-Step Time (s) 3.18 3.43 4.20 6.05 8.85
Iteration Time (s) 152.85 169.71 196.25 253.94 767.79
Max Hops 0 1 3 6 13
Bandwidth (M of stats) 0.00 20.68 142.51 475.82 1424.26
Bottleneck (M of stats) 0.00 10.34 54.50 92.84 171.12

# topics 10 50 100 500 1000
# Unique Stats (in M) 1.16 5.82 11.64 58.18 116.36
# Total Stats (in M) 5.03 25.17 50.34 251.71 503.43
Opt Bandwidth (M of stats) 7.74 38.71 77.41 387.07 774.15

MapReduce
Setup Time (s) 3.90 14.17 23.58 96.50 225.85
E-Step Time (s) 9.36 24.65 47.16 260.44 524.09
C-Step Time (s) 5.18 26.37 51.91 599.32 993.60
M-Step Time (s) 0.20 2.69 6.51 39.19 89.88
Iteration Time (s) 14.73 53.72 105.58 898.95 1607.56
Max Hops 2 2 2 2 2
Bandwidth (M of stats) 9.52 47.60 95.20 475.99 951.98
Bottleneck (M of stats) 9.52 47.60 95.20 475.99 951.98

All Pairs
Setup Time (s) 20.44 29.72 35.19 213.49 549.89
E-Step Time (s) 9.15 23.19 46.97 265.74 518.71
C-Step Time (s) 2.62 13.09 24.23 146.24 572.00
M-Step Time (s) 0.05 0.49 1.45 8.85 20.01
Iteration Time (s) 11.82 36.78 72.65 420.83 1110.72
Max Hops 1 1 1 1 1
Bandwidth (M of stats) 52.29 261.43 522.87 2614.33 5228.65
Bottleneck (M of stats) 2.68 13.40 26.80 134.00 268.01

Junction Tree
Setup Time (s) 22.92 25.15 25.16 67.54 124.36
E-Step Time (s) 8.99 23.25 68.59 256.60 514.02
C-Step Time (s) 3.81 19.10 30.58 173.23 330.98
M-Step Time (s) 0.11 1.18 3.13 20.66 43.62
Iteration Time (s) 12.91 43.53 102.30 450.49 888.62
Max Hops 14 14 14 14 14
Bandwidth (M of stats) 12.85 64.23 128.46 642.30 1284.60
Bottleneck (M of stats) 1.39 6.93 13.87 69.33 138.67

(a) (b)

Table 1: (a) Results for scaling up number of nodes, training Model 1 with 145k sentence pairs per node. (b) Results
for scaling up number of topics, training LDA with all 804k documents on 20 nodes. All times are measured in seconds,
numbers of statistics are measured in millions, and bandwidths are measured in millions of statistics passed per iteration.
# unique stats measures |α|, whereas # total stats measures

P
i |αi|. Opt bandwidth is theoretically optimal bandwidth,

computed by 2∗(
P

i |αi|−|α|) (see section 4.3). Setup time includes all time spent until all nodes started the first E-Step.
Median total time per iteration is given, as well as a breakdown into E-, C-, and M-Steps. Max hops is the diameter of
the graph. Bottleneck is maximum bandwidth in & out of any single node. (*) indicates an out-of-memory error.

much lower than for word alignment, because sets of
relevant words can be determined first, and only then
expanded to (word, topic) pairs.

We note that the total bandwidth is actually lower for
MapReduce than Junction Tree since the MST only
heuristically minimizes the number of disconnected
statistic components, rather than the true cost of en-
forcing the running intersection property. Despite this,
the bandwidth bottleneck for Junction Tree is still
much lower than for MapReduce.

6. Conclusion

We have demonstrated theoretically and empirically
that a Distributed EM system can function success-
fully, allowing for both significant speedup and scaling
up to computations that would be too large to fit in
the memory of a single machine. Future work will con-
sider applications to other machine learning methods,
alternative junction tree heuristics, and more general
graph topologies.
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