
Optimizing Partitioned Global Address Space
Programs for Cluster Architectures

Wei-Yu Chen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-140

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-140.html

December 4, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Optimizing Partitioned Global Address Space Programs for Cluster Architectures

by

Wei-Yu Chen

B.S. (University of California, Berkeley) 2000
M.S. (University of California, Berkeley) 2004

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Katherine A. Yelick, Chair
Professor Rastislav Bodik
Professor Gregory Fenves

Fall 2007

The dissertation of Wei-Yu Chen is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2007

Optimizing Partitioned Global Address Space Programs for Cluster
Architectures

Copyright 2007

by

Wei-Yu Chen

Abstract

Optimizing Partitioned Global Address Space Programs for Cluster Architectures

by

Wei-Yu Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Katherine A. Yelick, Chair

Unified Parallel C (UPC) is an example of a partitioned global address space language

for high performance parallel computing. This programming model enables application to

be written in a shared memory style, but still allows the programmer to control data layout

and the assignment of work to processors. An open question is whether programs writ-

ten in simple style, with fine-grained accesses and blocking communication, can achieve

performance approaching that of hand-optimized code, especially for cluster environments

with high network latencies.

This dissertation proposes an optimization framework for UPC that automates the trans-

formations currently performed manually by programmers. The goals of the optimizations

are twofold: not only do we seek to aggregate fine-grained remote accesses to reduce the

number and volume of message traffic, but we also want to overlap communication with

computation to hide network latency. The framework first applies communication vector-

ization and strip-mining to optimize regular array accesses in loops. For irregular fine-

grained accesses, we apply a partial redundancy elimination framework that also generates

1

split-phase communication. The last phase targets the blocking bulk transfers in the pro-

gram by utilizing runtime support to automatically schedule them and achieve overlap.

Message aggregation is performed as part of the scheduling to further reduce the commu-

nication overhead. Finally, we present several techniques for optimizing the serial perfor-

mance of a UPC program, in order to reduce both the overhead of UPC-specific constructs

and our source-to-source translation.

The optimization framework has been implemented in the Berkeley UPC compiler, and

has been tested on a number of supercomputer clusters. The optimizations are validated

on a variety of benchmarks exhibiting different communication patterns, from bulk syn-

chronous benchmarks to dynamic shared data structure code. Experimental results reveal

that our framework offers comparable performance to aggressive manual optimization, and

can achieve significant speedup compared to the fine-grained and blocking communication

code that programmers find much easier to implement. Our framework is completely trans-

parent to the user, and therefore improves productivity by freeing programmers from the

details of communication management.

Chair Date

2

Contents

1 Introduction 1

1.1 An Optimizations Framework for PGAS Programs 4

1.2 Overview of the Optimizations . 6

2 Background 11

2.1 Unified Parallel C . 11

2.2 The Berkeley UPC Compiler . 14

2.3 Translation Framework Overview . 16

2.4 Memory Consistency Models . 21

3 Experimental Setup 25

4 Single-Node Performance 30

4.1 Standard C Code Performance . 31

i

4.2 Performance of Pointer-to-shared Operations 35

4.3 Optimizing UPC Forall Parallel Loop . 39

4.3.1 Affinity Test Removal . 40

4.3.2 Privatizing Shared Local Accesses in Forall Loops 43

4.3.3 Experimental Results . 45

5 Optimizing Fine-grained Array Accesses 48

5.1 Optimizing Regular Communication in Loops 49

5.2 Practical Considerations for Message Strip-Mining 50

5.3 An Empirical Study for Strip-mining . 53

5.3.1 Overall Benefit of Strip-mining 54

5.3.2 Effects of Loop Computation Overhead 56

5.3.3 Selecting the Strip Size . 58

5.3.4 Effects of Unrolling . 63

5.4 Implementation . 65

5.5 Experimental Results . 67

6 Optimizing Fine-grained Irregular Accesses 70

6.1 Algorithm Overview . 71

6.2 Optimizing Shared Pointer Arithmetic . 73

ii

6.3 Split-phase Communication for Reads . 75

6.4 Split-phase Communication for Writes . 77

6.5 Coalescing Communication Calls . 79

6.6 Example . 82

6.7 Experimental Results . 83

6.8 Application Study . 86

7 Optimizing Bulk Communication 88

7.1 Design and Implementation . 89

7.1.1 Optimizing Puts . 91

7.1.2 Optimizing Gets . 94

7.1.3 Automatic Communication Aggregation 98

7.2 Performance Analysis . 99

7.2.1 Buffering Overhead . 100

7.2.2 Communication-Related Overhead of Speculative Prefetch 102

7.2.3 Effectiveness of Communication Aggregation 105

7.3 Experimental Results . 106

7.4 Breakdown of Benchmark Performance 109

8 Related Work 113

iii

8.1 Parallel Programming Models . 113

8.2 Optimizations for Parallel Programs . 116

8.2.1 Optimizing for Fine-grained Regular Accesses 119

8.2.2 Optimizing for Fine-grained Irregular Accesses 120

8.2.3 Optimizing Bulk Communication 122

9 Conclusions 124

Bibliography 126

iv

List of Figures

1.1 Summary of communication optimizations in our framework 8

2.1 UPC memory model with sample variable declarations. 12

2.2 Vector addition benchmark in UPC . 14

2.3 The Berkeley UPC compiler . 15

2.4 UPC-to-C translation process . 17

2.5 Optimization framework for the translator. 20

2.6 Example of reordering that violates the strict memory model. 23

4.1 Serial performance comparison: UPC v. C v. Fortran. Class A input is used. 34

4.2 UPC pointer-to-shared components. 35

4.3 Performance of UPC pointer arithmetic. (D) denotes dynamic threads, (S)

static threads. 37

4.4 Performance for UPC shared local access 39

4.5 upc forall loop affinity test removal. 41

v

4.6 Examples of forall loop iteration to thread mapping. The original forall

loop appears at the top, while the result C code is at bottom. 42

4.7 Privatization of shared local accesses in forall loops. 45

4.8 Stream triad benchmark on the Opteron/VAPI system. 46

5.1 Unoptimized loop, where r is remote. 51

5.2 Vectorized loop. 51

5.3 Message strip-mining. 51

5.4 Unrolling a strip-mined loop. 51

5.5 Traditional LogP model for sending a point-to-point message. 52

5.6 Maximum speedup achieved by message strip-mining, for transfer size

from 1KB to 1MB. 55

5.7 Maximum speedup achieved by message strip-mining, with light computa-

tion. 57

5.8 Speedup achieved by various strip sizes for a 1MB transfer, heavy compu-

tation. 58

5.9 Speedup achieved by various strip sizes for a 64KB transfers, heavy com-

putation. 59

5.10 Flood bandwidth for blocking gets. 60

5.11 Accuracy of strip-mining performance model for the Opteron/VAPI cluster. 62

vi

5.12 Accuracy of strip-mining performance model for the POWER5/LAPI cluster. 63

5.13 Accuracy of strip-mining performance model for the Itanium/GM cluster. . 64

5.14 Communication schedule for strip-mining and unrolling. 65

5.15 Speedup for message strip-mining on two NAS benchmarks. 68

6.1 Redundancy elimination for shared pointer arithmetic. 74

6.2 Split-phase analysis for reads. Communication points correspond to gets,

actual use syncs. 76

6.3 Split-phase analysis for writes. 79

6.4 Compiler directed coalescing. 80

6.5 Performance model for fine-grained coalescing. 82

6.6 Sample code from optimized programs. 83

6.7 Optimization speedup, measured as fraction over unoptimized version. . . . 84

6.8 Performance on a CFD application. 87

7.1 Candidates for our nonblocking optimization. 90

7.2 Runtime structure for nonblocking puts. 93

7.3 Runtime structure for get prefetching. 97

7.4 Put initiation overhead. 101

7.5 Memory copy overhead for prefetched gets, measured as Tmemcpy/Tmemget. 102

vii

7.6 Prefetch initiation overhead, for each individual get. 103

7.7 Strided get performance micro-benchmark. 105

7.8 Optimization speedup for 16 threads. 107

7.9 Optimization speedup for 64 threads. 108

7.10 Performance comparison with and without aggregation. 111

viii

List of Tables

3.1 Machine summary . 26

3.2 Benchmark summary. Results for the last two columns were collected on

16-thread runs, using data from thread zero. 27

7.1 Breakdown of nonblocking put time (16 threads). All values are in mi-

croseconds. 109

7.2 Breakdown of nonblocking get time (16 threads). All values are in mi-

croseconds. 110

ix

Acknowledgments

First and foremost, I am deeply grateful to my advisor Kathy Yelick, as this dissertation

would not have been completed without her guidance for the past five years. She introduced

me to the area of parallel computing, taught me how to write papers and do research, and

always managed to find time in her busy schedule to guide and mentor my work.

I am also thankful for the interactions with other members of my dissertation commit-

tee. Ras Bodik was kind enough to read both my Master’s thesis and later this disserta-

tion, and provided many valuable suggestions from the PL angle. Greg Fenves offered

big-picture insights on how my optimizations could be applicable to read world scientific

applications.

I would also like to thank my colleagues in the Berkeley UPC group, including Chris-

tian Bell, Dan Bonachea, Jason Duell, Paul Hargrove, Parry Husbands, Costin Iancu, Ra-

jesh Nishtala, and Mike Welcome. My research has benefited tremendously from their

work, and they have been important co-authors on several papers that form the basis of

this dissertation. Costin Iancu deserves special thanks for his crucial contributions on the

Berkeley UPC translator. I really enjoyed the friendship of my office mates over the years

(Christian Bell, Dan Bonachea, Kaushik Datta, Rajesh Nishtala, and Jimmy Su), and I can

always count on them to answer my questions and read paper drafts.

Last but definitely not least, I would like to thank my family and friends for their con-

tinuous support. My parents gave me the opportunity to come to the United States, and

their love and encouragements were the fuel that propelled me through six years of gradu-

ate school. Finally thanks go to my sister Irene, who despite having endured years of my

whining is still someone that I can tell anything and everything to.

x

Chapter 1

Introduction

Today clusters are the dominant architecture in high performance computing arena due to

their excellent cost/performance ratio. Clusters represent 75% of the systems in the most

recent (June 2007) ranking on the world’s top 500 fastest computers [101], with several

boasting a processor count of more than 10,000. In the meantime, chip multiprocessors

(CMP) have become part of mainstream computing, with Intel and AMD both transitioning

their product line to quad-core processors. The prevailing hardware trends indicate that

tomorrow’s applications must embrace parallelism in order to leverage the power of the

massively parallel computer systems in the future.

Writing parallel software is a notoriously difficult task, however, due to the correct-

ness issues that arise from nondeterminism and the subtle performance characteristics of

locality and parallelism. Today, most parallel software is written in one of two program-

ming models: Two-sided message passing (i.e., MPI [79]) is used on large-scale machines

and clusters, while shared memory programming (often with dynamically created threads

1

or OpenMP [85]) is used on smaller machines with hardware support for shared mem-

ory. Both models have their problems. Message passing gives programmers control over

performance-critical features, such as locality and load balance, but the need to pack and

unpack messages and coordinate between senders and receivers is tedious and sometimes

awkward. Traditional shared memory programming offers flexible communication by al-

lowing one thread to directly read and write into shared data structures, but lacks control

over data layout or other forms of locality management that are essential to performance.

The contrast between the two models reflects the challenges of finding the appropriate

levels of abstraction for the underlying hardware. Exposing low level details about the ar-

chitecture delivers performance, but hurts productivity by requiring programmers to make

explicit decisions about communication management and data decomposition. On the other

hand, a high level abstraction simplifies the task of parallel programming, but makes it more

difficult for programmers to overcome the abstraction and achieve performance.

In this dissertation, we will examine a relatively new class of languages called Parti-

tioned Global Address Space (PGAS) languages that offer some advantages of both mod-

els. The global address space abstraction supports shared data structures, but the space is

partitioned into processor domains so that programmers can control data layout for perfor-

mance. Each of the current PGAS languages is based on a popular sequential programming

language, so that their syntax will appear familiar to many programmers. Unified Parallel

C (UPC) [100] is an extension of ISO C, Co-Array Fortran [83] is an extension of Fortran

90, and Titanium [51, 111] is primarily an extension of Java, but with Java’s thread features

omitted.

Previous work has demonstrated that these languages offer significant advantages in

2

both programmability and performance relative to MPI [25, 31, 40, 43]. The programma-

bility advantages come primarily from the global address space, as the communication code

is much simpler when implemented as memory accesses. Additional advantages accrue

from high level language support, such as distributed array abstractions. More surprising is

the performance advantage of PGAS languages for some applications, which comes from

their use of a one-sided communication model [12]. In one-sided communication, data

transfers are decoupled from inter-thread synchronization, and this allows for more effi-

cient use of cluster network hardware. For small and medium size messages, one-sided

communication can outperform two-sided message passing by 20%-80% on networks with

remote direct memory access (RDMA) support. PGAS languages thus offer a more con-

venient and productive programming style than explicit message passing, and good perfor-

mance can still be achieved because programmers retain explicit control of data placement

and load balancing. Another virtue of PGAS languages is their versatility, since they can

run well on both shared and distributed memory machines.

In spite of the positive performance and programmability results for the PGAS lan-

guages, these studies have confirmed the need for hand-tuning of code. Programs that

perform single-word remote reads and writes, while very simple to program, are not al-

ways practical on machines with high communication latency. Due to the loose coupling

of the network interconnects and the microprocessors, fine-grained remote accesses are in-

herently expensive operations on cluster architectures; the cost of sending an eight-byte

message is typically between 4 − 20us on today’s high-performance networks [11]. Con-

sequently, PGAS programmers sometimes need to invest substantial efforts to make their

applications performance portable, by manually scheduling and combining remote accesses

to reduce communication overhead. Such manual transformations can often be tedious and

3

error-prone, and negate some of the productivity advantages offered by PGAS languages.

1.1 An Optimizations Framework for PGAS Programs

The premise of this dissertation is that using sophisticated program analyses and optimiza-

tions, UPC programs written in a straightforward manner can attain performance approach-

ing that of hand-optimized code. Our approach is to look at the optimizations that have

been the most successful in hand-optimized code and devise techniques for automating

them in the UPC compiler and runtime system. While some of these optimizations have

enormous performance impacts, this work remains a significant departure from automatic

parallelization, which is widely viewed as intractable for large-scale machines. In our set-

ting, the application programmer is responsible for identifying parallelism and distributing

data structures, while the compiler is responsible for selecting communication mechanisms

and optimizing single node performance for UPC constructs.

This research in PGAS language analysis and optimizations uses the UPC language

and the Berkeley UPC compiler as the vehicle for study, although many of the results are

applicable to the other languages and compilers. The Berkeley UPC Project is a joint

Lawrence Berkeley National Laboratory and UC Berkeley research effort aimed at in-

creasing the portability of UPC programs by building a portable, open source compiler

framework that also offers comparable performance to commercial UPC implementations.

To achieve portability and high performance, the Berkeley UPC compiler uses a layered

design, which can be tailored to adapt to the communication primitives and processor ar-

chitectures offered by different platforms. Specifically, the compiler generates C code that

4

contains calls to a UPC runtime interface [13], which is implemented atop a language-

independent communication layer called GASNet [16].

The cost of a message transfer on a cluster interconnect can be divided into two com-

ponents: a per-message cost influenced by the latency of the network, and a per-byte cost

influenced by the communication bandwidth of the network. This suggests that aggregat-

ing small messages into large ones can be an effective optimization, since it amortizes the

fixed per-message costs and utilizes the high bandwidth provided by the network for large

messages. Making the transfers nonblocking and overlapping them is another common

optimization that is especially useful for PGAS programs, as the software overheads for

one-sided accesses tend to be considerably lower compared to MPI messages. Our frame-

work uses a combination of compiler and runtime support to implement both approaches

for optimizing communication:

• Communication aggregation: Our framework primarily targets programs with fine-

grained accesses and transforms them into coarser-grained transfers, but bulk com-

munication calls to non-contiguous memory regions on the same processor can also

benefit from our optimizations. This optimization reduces the number of remote ac-

cesses and amortizes communication latency.

• Communication overlapping: Our framework automatically transforms blocking re-

mote accesses (either fine-grained or bulk) into nonblocking communication to over-

lap communication with computation and with other communication events. This

optimization enables the processor to perform useful computation work instead of

sitting idle while waiting for the remote transfer to complete. Overlap with computa-

tion may also reduce the effects of network contention by spreading communication

5

over a longer period of time.

The two principles of communication optimizations, aggregation and overlapping, may

be incompatible in some situations. For example, aggregating small accesses into a single

bulk transfer achieves better bandwidth, but could decrease the amount of communication

and computation overlap available. Similarly, separating the initiation of a nonblocking

access as far as possible from its completion maximizes the amount of overlap, but could

reduce the opportunities for communication aggregation. The tradeoffs between the two ap-

proaches can be highly dependent on the particular system (e.g., send overhead, bandwidth,

queue depth) and application (e.g., communication pattern, message size) in question. Bal-

ancing the two optimization goals is thus a challenge for our optimizations, as there is no

complete solution that can guarantee optimal performance. Instead, we apply heuristics

based on performance models to ensure that our framework can achieve performance that

approaches and sometimes exceeds that of hand optimized code.

1.2 Overview of the Optimizations

Our framework consists of three communication optimization phases, plus miscellaneous

optimizations that improve uniprocessor performance. The correctness of these optimiza-

tions relies on the relaxed UPC memory consistency model, as they change the order of

shared memory operations, which may be visible to other threads.

• Serial optimizations: Although communication overhead tends to receive more atten-

tion when optimizing parallel programs, uniprocessor performance is equally impor-

tant for achieving good overall performance, since scalable applications will spend

6

most of their execution time in local computation code. To achieve good serial perfor-

mance, we carefully tune the compiler framework to generate good quality C output

that can be optimized by the backend compiler. We also develop several optimiza-

tion techniques to reduce the overhead of UPC specific constructs, including shared

pointer manipulation functions and the upc forall parallel loop. Chapter 4 summa-

rizes these optimizations.

• Optimizing fine-grained regular accesses: In the first phase of our framework, we ap-

ply message vectorization to hoist individual array accesses out of loops and aggre-

gate them into a single transfer. Message vectorization has been studied extensively

in the context of data parallel languages, and traditional techniques try to aggregate

as much as possible to reduce the number of messages. While minimizing message

count is an important optimization goal, it can lead to missed opportunities for over-

lap. Our approach applies a transformation called message strip-mining that is more

effective for PGAS programs. Message strip-mining attempts to reduce the over-

all communication costs by breaking up large message transfers into smaller ones

that can be overlapped with computation. By deriving a performance model using

synthetic benchmarks, we develop heuristics that enable strip-mining to significantly

outperform the vectorized loop. The optimizations are described in Chapter 5.

• Optimizing fine-grained irregular accesses: For irregular pointer-based accesses that

are not amenable to our array-based optimizations, we develop a separate static anal-

ysis framework that performs partial redundancy elimination (PRE) to both shared

fine-grained accesses as well as shared pointer arithmetic. Code motion is applied as

part of the framework to automatically generate split-phase communication, by sep-

7

arating the initiation of a remote access from its completion. During communication

scheduling, small reads and writes that exhibit spatial locality (i.e., they belong to the

same array or struct) may also be coalesced into a single transfer. Chapter 6 presents

these optimizations.

• Optimizing bulk memory transfers: While our PRE framework is effective for fine-

grained irregular accesses, it can have difficulties optimizing bulk communication

routines due to the limitations in static array range and shape analysis, especially for

C-based languages. Therefore, in the third phase of the framework, we develop run-

time techniques to automatically transform blocking bulk transfers into nonblocking

communication calls. Correctness is preserved via runtime conflict checks and dou-

ble buffering, and the system also recognizes special access patterns and aggregates

them to further improve performance. Chapter 7 presents our optimizations.

Optimize regular
array accesses

Optimize irregular
pointer accesses

Nonblocking bulk
communication

Loop framework
for message
vectorization,
message strip-
mining

PRE framework
with split-phase
access and
coalescing

Runtime framework
for communication
overlap and
aggregation

A[i][j][k] p->x->y upc_memget(dst, src, size)

Figure 1.1: Summary of communication optimizations in our framework

Figure 1.1 summarizes the communication optimizations applied by our framework.

Together the framework covers a wide range of communication patterns, from fine-grained

8

accesses to bulk synchronous transfers. All three phases combine the use of communi-

cation aggregation with communication and computation overlap in order to achieve the

best performance. Each of the optimization phases operates independently, so that pro-

grammers can selectively enable the individual phases based on their application needs.

More importantly, all of the optimizations are transparent to the user. Thus, while our

optimization framework is not always as effective as aggressive manual transformations,

it can improve productivity by freeing programmers from the details of communication

management, which is also one of the major design goals for PGAS languages.

The optimizations are evaluated on a variety of benchmarks, ranging from the bulk

synchronous benchmarks to dynamic shared data structure code with irregular accesses.

Several supercomputer clusters were used in the experiments, covering the most popular

system architectures and network interconnects. Experimental results suggest that all of

the optimization phases are needed to maximize the framework’s effectiveness. In terms of

serial performance, despite the source-to-source code generation, the Berkeley UPC com-

piler suffers a less than 2.5% performance loss compared to sequential C code. Our opti-

mizations are also effective at reducing the serial overhead associated with UPC-specific

constructs such as shared pointer arithmetic and forall parallel loops.

In terms of communication optimizations, the message strip-mining transformation in

Chapter 5 can bring up to a 40% speedup on micro-benchmarks and a 10-20% speedup on

two of the NAS benchmarks compared to the reference implementation that uses block-

ing communication. The static optimization framework in Chapter 6 can achieve signifi-

cant performance improvement for common fine-grained communication patterns, offering

speedup as high as 80%. On a full computational fluid dynamics (CFD) application with

9

a lot of irregular accesses, our framework achieves a 10% speedup overall and a 30%

speedup on the communication phase of the application. Finally, our runtime-based non-

blocking transformation of bulk transfers delivers a near 30% performance improvement

over the original blocking code, and is only slightly worse than manual optimizations.

10

Chapter 2

Background

In this chapter, we present a high level overview of the UPC language and the Berkeley UPC

compiler, focusing on aspects relevant to the optimizations described in this dissertation.

More details on the compiler can be found in [25] and [27], and the language specification

provides a comprehensive definition of the UPC language [100].

2.1 Unified Parallel C

UPC is a parallel extension of the ISO C programming language aimed at supporting high

performance scientific applications. The language adopts the Single-Program-Multiple-

Data (SPMD) programming model, so that every thread runs the same program but keeps

its own private local data. Each thread has a unique integer identity expressed as the

MYTHREAD variable, and the THREADS variable represents the total number of threads,

which can either be a compile-time constant or specified at runtime.

11

In addition to each thread’s private address space, UPC provides a shared memory area

to facilitate communication among threads, and programmers can declare a shared object

by specifying the shared type qualifier. While a private object may only be accessed

by its owner thread, all threads can read or write data in the shared address space. The

shared memory space is logically divided among all threads, so from a thread’s perspective

the shared space can be further divided into a local shared memory and remote one. Data

located in a thread’s local shared space are said to have “affinity” with the thread. Figure 2.1

illustrates UPC’s Partitioned Global Address Space model. While a thread can only access

its own copy of the private variable mine, a single copy of the shared variable ours exists

on thread zero and can be used by all threads.

Private

Thread0 Thread1 Threadn-1

ours:

x[0],x[n]

y[0],y[1]

x[1],x[n+1]

y[2],y[3]

x[n-1],x[2n-1]

y[2n-2],y[2n-1]

#define n THREADS
shared int ours;
int mine;
shared double x[2*n]; //cyclic array
shared [2] double y[2*n]; //block cyclic array
double *loc; //local pointer
shared double *glob; //gobal pointer (pointer-to-shared)

Shared

mine: mine:

loc: loc:

glob: glob:

mine:

loc:

glob:

Local shared access
Remote access

Figure 2.1: UPC memory model with sample variable declarations.

12

Figure 2.1 also shows how the pointers in UPC can be classified based on the locations

of the pointers and of the objects they point to. A local pointer such as loc may only ref-

erence local data (i.e., the pointer and the pointed object belong to the same thread), but the

data may live in either the private or the shared space of the thread. A global pointer glob

may only used to reference data in the shared address space, which may be either local (a

shared local access) or remote (a shared remote access). A global pointer is therefore also

named a pointer-to-shared. Dereferencing local shared data with a global pointer is slower

than using a local pointer due to the extra overhead in determining affinity, and shared re-

mote accesses in turn are typically significantly slower because of the network overhead.

Communication in UPC can be either implicit through pointer dereferences and shared ar-

ray accesses, or explicit through the upc memget, upc memput, and upc memcpy calls.

UPC gives the user direct control over data placement through shared memory alloca-

tion and distributed arrays. When declaring a shared array, programmers specify a block

size in addition to the dimension and element type, and the system uses this value to dis-

tribute the array elements block by block in a round-robin fashion over all threads. Re-

visiting Figure 2.1, the y array is declared with a block size of two, which means that the

compiler should allocate the first two elements of y on thread 0, the next two on thread

1, and so on. If the block size is omitted the value defaults to one (cyclic layout like the

array x), while a layout of [] or [0] indicates indefinite block size, i.e., that the entire

array should be allocated on a single thread. As is the case with C pointers and arrays, a

point-to-shared can be used to access elements in a shared array.

Figure 2.2 presents a simple parallel vector addition benchmark in UPC. The three

shared arrays are distributed cyclically, and each thread follows the owner-computes rule

13

/* vadd.c */
#include <upc.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
int main() {

int i;
for(i=0; i<N; i++)
if (MYTHREAD == i%THREADS)

sum[i]=v1[i]+v2[i];
}

Figure 2.2: Vector addition benchmark in UPC

and processes its own local shared data. Other notable features of UPC language include

dynamic allocation functions, synchronization constructs, and a builtin upc forall parallel

loop.

2.2 The Berkeley UPC Compiler

Figure 2.3 shows the overall structure of the Berkeley UPC compiler, which is divided into

three components: the UPC-to-C translator, the UPC runtime system, and the GASNet

communication system [16]. During the first phase of compilation, the Berkeley UPC

compiler translates UPC programs into C code in a platform-independent manner, with

UPC-related parallel features converted into runtime library calls. The translated C code

is next compiled using the target system’s C compiler and linked to the runtime system,

which performs initialization tasks such as thread generation and shared data allocation.

14

Unified Parallel C at LBNL/UCB

TranslatorUPC Code

Translator Generated C Code

Berkeley UPC Runtime System

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Compiler-
independent

Language-
independent

Figure 2.3: The Berkeley UPC compiler

The Berkeley UPC runtime delegates communication operations such as remote memory

accesses to the GASNet communication layer, which provides a uniform interface for low-

level communication primitives on all networks. GASNet also provides high level non-

contiguous remote access methods called the VIS (vector/indexed/strided) functions [17].

The VIS calls accept a list of non-contiguous put/get as arguments, and the communication

algorithm is selected at runtime based on network characteristics and transfer parameters.

The VIS calls perform message aggregation using GASNet Active Messages, packing non-

contiguous data at the source into large packets and unpacking it at the destination.

This three-layer design has several advantages. Because of the choice of C as our inter-

mediate representation, our compiler will be available on most commonly used hardware

platforms that have an ISO-compliant C compiler. In addition to the portability benefits,

the layered design also means that each component can be implemented and performance-

tuned individually. The backend C compiler is free to aggressively optimize the inter-

15

mediate C output, and the UPC-to-C translator can utilize its UPC-specific knowledge to

perform communication optimizations. High performance is achieved in the GASNet sys-

tem by directly targeting the low-level communication interfaces, while still abstracting

away the network specific features from the UPC runtime. Finally, most runtime and GAS-

Net operations are implemented using macros or inline functions to minimize the overhead

introduced by the layered design.

2.3 Translation Framework Overview

The analyses and optimizations in this dissertation are primarily implemented in the Berke-

ley UPC translator [27]. The translator is derived from the Open64 compiler suite [84], an

open source collection of optimizing compiler tools. Major components in Open64 include

front ends for C/C++/FORTRAN, a loop-nest optimizer (LNO), a global scalar optimizer

(WOPT), and an interprocedural analysis framework. Figure 2.4 describes the UPC-to-C

translation process applied by the translator. The basic translation process consists of front

end processing, backend lowering, and whirl2c transformation:

• Front end: Upon receiving a preprocessed UPC file, the translator’s front end parses

and type checks the input, and generates a high level WHIRL (Open64’s intermediate

representation [107]) file. UPC-specific information such as shared types and block

size for distributed arrays is preserved in the symbol table, so that the later translator

phases can utilize the information in performing optimization and code generation.

• Back end: The primary functionality of the backend is to convert expressions in-

volving a pointer-to-shared into the appropriate runtime library calls. Specifically,

16

Preprocessed UPC
Source

WHIRL with shared
types

WHIRL with
runtime calls

ISO C code

Parsing

Optimized
WHIRL

Lowering

WHIRL2C

Lowering

Backend C
compiler

Optimizer

Figure 2.4: UPC-to-C translation process

pointer arithmetic on a shared address is converted into function calls based on the

block size of the pointer-to-shared. Similarly, loads and stores of shared variables

may require communication and are also transformed into runtime calls. The ac-

tual runtime function invoked again depends on a number of factors such as the type

being loaded.

• Whirl2c: The final component’s job is to convert the WHIRL intermediate repre-

sentation into ISO-compliant C code, with shared pointers declared as opaque UPC

pointer-to-shared types that are defined internally in the runtime system. This en-

17

ables us to experiment with different pointer-to-shared representations in the runtime

system without having to modify the translator. As Section 4.1 shows, whirl2c gener-

ates high-level C language constructs when possible (e.g., using struct field accesses

rather than pointer arithmetic), so that its output will bear sufficient resemblance to

the source code. This stage also provides special support for static and global shared

variables, whose storage can not be allocated until runtime to ensure that they are

addressable by the network. These variables are instead dynamically allocated and

initialized during program startup [41]. Finally, an indirect access scheme is adopted

for applications running with POSIX threads so that each pthread gets its own private

copy of thread-local variables [42]; whirl2c is responsible for generating the address

translation macros when accessing such variables in the program.

When compiling for clusters, conceptually the translator targets the following one-sided

communication interface:

sync_t get(void *dest, shared void *s, size_t n);

sync_t put(shared void *dest, void *s, size_t n);

void sync(sync_t handle);

Both get and put are nonblocking memory-to-memory operations, transferring n bytes

of data and returning an explicit synchronization handle. The sync function blocks until

the operation corresponding to the supplied handle completes. Synchronization of a get

operation implies the local dest (usually a stack temporary) now contains the value of the

remote address; synchronization of a put means that the remote dest has been updated with

the content of the local source. This generic interface can be implemented on top of any

18

of today’s high-performance networks, but also means that compiler has the responsibility

of managing handles and issuing synchronization calls at the right place. In particular,

messages are not guaranteed to be delivered in order; if two puts are made to overlapping

memory locations without a sync in between, the resulting value is undefined.

When the “–opt” flag is passed to the Berkeley UPC compiler, the translator invokes

the optimization phase, which includes both the LNO and the WOPT, before the backend

lowering of shared expressions. The goal of LNO is to improve the memory performance

of a program’s loop nests; it includes an extensive data dependence analysis framework

and supports well-known loop transformations such as loop fission/fusion, unroll and jam,

loop tiling, and vector data prefetching [108]. WOPT operates on individual functions and

performs a number of standard optimizations such as copy propagation, partial redundancy

elimination, and dead code elimination. At the heart of WOPT is its Hashed Static Single

Assignment (HSSA) representation [30], which extends SSA to support pointer aliases and

indirect memory operations. The HSSA form is used to implement most of the optimiza-

tions, including a partial redundancy elimination framework (SSAPRE) [29, 66].

For our source-to-source transformation, several of Open64’s optimizations are not di-

rectly applicable, since they produce outputs that are too low-level to be expressed in C

(e.g., register promotion [75] and automatic parallelization). Such optimizations are there-

fore disabled by the Berkeley UPC translator, with the hope that they can be performed

equally well by the backend compiler. In addition to employing many of Open64’s large

repertoire of optimizations in the compilation process, we have also supplied several opti-

mizations that require UPC specific knowledge and could not be performed by a C com-

piler.

19

PREOPT

LNO
upc_forall optimization (Ch 4)

Optimizing loop fine-grained access
(Ch 5)

WOPT
PRE & split-phase communication

(Ch 6)
Nonblocking bulk communication

(Ch 7)

PREOPT SSA-based standard
analyses and optimization

Loop transformations
UPC specific loop optimizations

SSA-based standard
analyses and optimization

PRE
Communication scheduling

Figure 2.5: Optimization framework for the translator.

Figure 2.5 summarizes the overall structure of the Berkeley UPC translator’s optimiza-

tion framework. At the end of the LNO phase, we add an optimization for the upc forall

parallel loop that helps remove the overhead of distributing the iterations to the executing

threads (Section 4.3). Also in the LNO is a loop communication optimization framework,

described in Chapter 5, that hoists fine-grained remote accesses out of a loop nest and

combines and schedules them to significantly reduce communication overhead. Both opti-

mizations utilize LNO’s analysis information, and operate on loops that have the semantics

of Fortran DO Loops. Specifically, a DO loop contains a single index variable, and the

20

condition expression is a comparison on the value of the index variable; the lower bound,

upper bound, and stride of the loop are all loop-invariant.

A separate optimization at the end of the WOPT phase is designed for fine-grained ac-

cesses that do not benefit from our loop optimization framework (e.g., they do not appear

inside loops, or have dynamic access patterns). The optimizer performs PRE on both shared

pointer arithmetic and shared memory accesses, applies split-phase communication to sep-

arate the initiation of an access from its completion, and coalesces individual accesses when

appropriate. For the bulk communication routines that are not amenable to static analysis,

Chapter 7 presents a runtime-based optimization framework that automatically converts

them into nonblocking transfers. The candidates for this optimization (upc memget and

upc memput calls) are also identified at the end of WOPT.

2.4 Memory Consistency Models

All of the optimizations presented in this dissertation require the ability to reorder remote

accesses in a program, either through aggregation or nonblocking communication. In a

uniprocessor environment, such compiler transformations must adhere to a simple data de-

pendency constraint: the orders of all pairs of conflicting accesses (accesses to the same

memory location, with at least one a write) must be preserved. The execution model for

parallel programs is considerably more complicated, since each thread executes its own

portion of the program asynchronously, and there is no predetermined ordering among ac-

cesses issued by different threads to shared memory locations. A memory consistency

model defines the memory semantics and restricts the possible execution orders of mem-

21

ory operations. More precisely, it determines whether accesses from one thread may be

observed to be out of order by another thread, and whether such reordering is legal.

An interesting UPC feature is its support for both a strict and a relaxed memory consis-

tency model. Every shared variable access in UPC is type qualified as “strict” or “relaxed”

either explicitly or inferred from pragmas. The relaxed model permits reordering of mem-

ory accesses as long as local data dependency is preserved, while the strict model further

requires that the effects of reordering can not be observed by other threads. The strict mem-

ory model is analogous to sequential consistency in that it requires the actual execution of

the accesses on each thread to be consistent with program order, while relaxed accesses

only need to preserve local data dependencies. The difference between the two models

is visible only in a program with a data race, which occurs when two threads access the

same memory location with no ordering constraints between them, and at least one of the

accesses is a write [81]. For example, reordering on either thread in Figure 2.6 is forbidden

if either variable x or y is declared strict, since doing so may produce results that would not

happen if execution follows the original program order. If both variables are declared re-

laxed, however, the compiler can freely reorder the memory operations due to the absence

of local data dependencies.

The goal of the UPC memory model is to exploit the tradeoff between programmability

and performance; relaxed accesses offer better performance since they can be aggressively

optimized by compilers as long as local data dependency on each thread is still preserved,

but programmers are left with the burden of ensuring that their code is free of race condi-

tions. While race conditions are likely to be programming errors even in a strict memory

model, debugging them in a relaxed model is more difficult due to potential reordering

22

Write X = 1

Read XWrite Y = 1

Read Y

(initially x = y = 0)

T1 T2

Write X

Write Y

Read Y

Read X

X = 0, Y = 1 for T2,
violates SC

Two Illegal Executions

By program order, T2
cannot observe (x,y) = (0,1)

Parallel Program

Time

Read Y

Read X

Write X

Write Y

Reordering on T1 Reordering on T2

Figure 2.6: Example of reordering that violates the strict memory model.

performed by the compiler. Optimizations described in this dissertation take advantage

of UPC’s relaxed model to aggressively reorder and combine shared accesses. Synchro-

nization operations such as barriers and lock/unlock operations are treated as code motion

barriers. In a static setting, they are represented as black box function calls that could

modify every shared memory location, and in a dynamic setting we simply stop the opti-

mization when encountering a synchronization event. Strict accesses are also modeled as

synchronization operations to prevent illegal reordering caused by our optimizations. This

is conservative, and more sophisticated parallel analysis techniques could be applied to

23

enable high-level optimizations for strict accesses [26]. We have found our strategy to be

sufficient for UPC programs in practice, however, since they rarely contain strict accesses

other than the built-in synchronization primitives.

24

Chapter 3

Experimental Setup

Portability is an important goal for the Berkeley UPC compiler; since the compiler trans-

lates UPC program into C code, it runs on any networking architectures that GASNet com-

munication interface supports, which includes most of today’s popular interconnects1. Our

optimizations should thus be evaluated on different cluster platforms to ensure that they

are performance portable. Performance results in this dissertation are collected on the su-

percomputer clusters listed in Table 3.1, covering a variety of network interconnects and

processor architectures. The Get and Put times in Table 3.1 refer to the cost of executing

an eight byte blocking remote access in our runtime, i.e., the roundtrip latency.

We use a number of benchmarks to evaluate the effectiveness of our optimization frame-

work. Most of the benchmarks are written by researchers outside our group, and reflect the

kind of UPC programs that our compiler is likely to encounter in the real world. Since

each phase of our optimization concentrates on different communication patterns, we also

1The full list of supported platforms may be found at http://upc.lbl.gov/download/.

25

System Processor Network Software Get(us) Put(us)
POWER5/LAPI
(Bassi)

8-way 1.9GHz
POWER5 (111
nodes)

IBM Federa-
tion

AIX 5.3, IBM
LAPI 2.3.3.3,
IBM xlc v7.0

9.2 8.2

Itanium/GM
(Citris)

Dual 1.3GHz
Itanium2 (42
nodes)

Myricom
Myrinet
LANai XP
PCI-X

Linux 2.6.18,
icc v9.0

23.3 19.7

Opteron/VAPI
(Jacquard)

Dual 2.2GHz
Opteron (320
nodes)

Mellanox
Cougar Infini-
Band 4X

Linux 2.6.5,
Pathscale cc
2.4

11.6 8.4

Table 3.1: Machine summary

use different benchmarks to evaluate them. For the framework in Chapter 6, we use bench-

marks containing fine-grained irregular accesses that can not be readily vectorized with

our loop optimization. Examples include distributed hashtables and dynamic work stealing

algorithms. For the automatic nonblocking communication optimization in Chapter 7, we

choose programs that use bulk memory copies for communication.

Table 3.2 summarizes the benchmarks used in this dissertation. The Get/Put column

refers to the dominant communication type in the program, and LOC represents the number

of lines of UPC source code (including comments) for each benchmark. The Get/Put count

column refers to the dynamic count of the remote accesses, while the last column reports

the average size of each access. The first five benchmarks are communication intensive

application kernels with irregular fine-grained accesses.

Gups: Gups is a benchmark that performs random read/modify/write accesses to a large

distributed array, a common operation in parallel hash table construction. Communication

in the benchmark takes the form a[b[i]].

Mcop: The Mcop benchmark solves the matrix chain ordering problem using clas-

26

Name Get or Put LOC(1000s) Get/Put Count(1000s) Avg. Size(KB)
Gups both 0.3 490 0.01
Mcop get 0.4 178 0.004
Sobel get 0.6 153 0.001

Psearch get 0.8 2.1 0.05
Barnes Hut get 2.2 223 0.004

BT both 6.7 2100 0.15
CG get 1.5 34 33
FT put 2.5 5 131

FT-pencils put 2.5 164 4
IS get 1.1 0.352 239

MG put 2 19 2.6
SP put 6.1 636 1.7

Gups-bulk put 0.6 8 0.5
CFD get 14.1 123 0.1

Table 3.2: Benchmark summary. Results for the last two columns were collected on 16-
thread runs, using data from thread zero.

sic dynamic programming algorithms [35]. The shared matrix is distributed cyclically by

columns, and communication occurs as part of solving the recurrence relations over all

subproblems.

Sobel: The Sobel benchmark, whose implementation is described in [43], performs

edge detection with Sobel operators (3X3 filters). The image is divided into equal contigu-

ous slices of rows and distributed among the threads, so that communication occurs only

when processing the last row of data.

Psearch: The Psearch benchmark performs parallel unbalanced tree search [89]. The

benchmark is designed to be used as an evaluation tool for dynamic load balancing strate-

gies. Communication takes place when a thread attempts to steal work from another thread.

Barnes Hut: The Barnes Hut benchmark [109], ported into UPC from the SPLASH2

benchmark suite, simulates the interaction of a system of bodies (e.g. galaxies or particles)

27

in three dimensions.

The rest of the benchmarks use bulk memory copies for communication and thus have

relatively large message size. Most of them come from the NAS Parallel Benchmarks

suite [7], and a brief description is given below.

BT: The NAS BT (Block Tri-diagonal) benchmark simulates a CFD application by

solving a system of equations for a three dimensional array of points. In this benchmark, a

thread issues a large number of strided remote accesses to its neighbor threads.

CG: The NAS CG (Conjugate Gradient) kernel is a sparse iterative solver in which a

sparse matrix-vector multiplication dominates the execution of the benchmark. The bench-

mark’s implementation is described in [14].

FT: The NAS FT kernel solves a partial differential equation on a 3-D mesh using the

Fast Fourier Transforms (FFT). The hand-tuned UPC implementation aggressively overlaps

communication with computation, by decomposing the FFT computation and communica-

tion into smaller pieces instead of performing a global exchange [12]. FT-pencils is a

variant of the benchmark that further reduces the granularity of the overlap.

IS: The NAS IS (Integer Sort) kernel performs a parallel bucket sort on integer keys.

Communication is implemented as a global exchange.

MG: The NAS MG (Multigrid) kernel uses the Multigrid method on hierarchical reg-

ular 3-D meshes. At each level of the grid, communication occurs due to the periodic

updates of ghost cell regions.

SP: The NAS SP (Scalar Penta-diagonal) benchmark shares a similar structure to the

BT benchmark. The benchmark performs a large number of strided remote puts.

28

Gups-bulk: Gups-bulk is a version of the HPCS RandomAccess benchmark that uses

bulk communication [77]. Unlike the fine-grained Gups, in this benchmark a thread “looks

ahead” the random address stream and pushes them to the remote threads to perform the

updates.

CFD: CFD is a computational fluid dynamics application that solves the time dependent

Euler equations for computational fluid flow in a rectangular computational domain, with

the high level data structures and algorithms implemented in UPC.

The UPC versions of BT, IS, MG, and SP are derived from the MPI NAS parallel

benchmarks, and their implementations are described in [33, 43].

29

Chapter 4

Single-Node Performance

Most optimizations for PGAS programs attempt to reduce their communication time in

order to combat the high network latencies on clusters. An equally important yet sometimes

overlooked performance metric for parallel programs is the uniprocessor execution time,

as most scalable applications will spend substantially more time doing computation instead

of communication. Since UPC is designed as a parallel extension of C, serial performance

of UPC programs can be further divided into two components: performance on ordinary

C code, and performance on UPC-specific features such as access to shared local data and

shared pointer arithmetic. For the former, it is important to ensure that the source-to-source

translation strategy adopted by our compiler does not cause a performance slowdown by

generating less efficient code. In Section 4.1, we examine the code generation quality of

our translator in more detail on a number of architectures. The subsequent sections focus on

the serial performance of the unique language features in UPC. In Section 4.2, we describe

techniques for lowering the overhead of the UPC shared pointer manipulation functions.

30

In Section 4.3, we present an optimization framework that could eliminate most of the

sequential overhead introduced by the upc forall parallel loop.

4.1 Standard C Code Performance

Since the Berkeley UPC compiler adopts a source-to-source translation strategy, serial per-

formance for UPC programs is largely dependent on the quality of the C compiler used

to compile the generated C code. On most supercomputers, the vendor supplied compiler

typically delivers much better serial performance than gcc, and our translator is carefully

implemented so that the generated code can be compiled by a wide variety of compiler and

hardware combinations.

While the quality of the backend C compiler is beyond our control, it is still important

to ensure that the source-to-source translation does not cause a performance slowdown due

to semantically equivalent but less efficient code being produced. Due to the large number

of systems supported, our translator does not apply platform-specific tunings in its code

generation. Instead, it aims to keep the translated output as syntactically similar as possible

to the original source, to minimize the potential performance perturbation introduced by

the translation. For example, control structures such as loops and switch statements are

preserved in their original form. Due to optimizations performed by the translator and the

lack of a one-to-one mapping between its intermediate representation and the C language,

it is generally impossible for the translated output to be syntactically identical to the pro-

gram source. In these cases, our translator produces high-level C code, in the hope that

they will most closely resemble the original code in both appearance and performance. For

31

example, pointer arithmetic expressions that are represented as byte offsets internally are

converted into symbolic field and array accesses whenever possible, so that the generated

code is human-readable and likely similar to the original user code. Multi-dimensional

array accesses are reconstructed instead of being flattened into one-dimensional array ac-

cesses. The translator also reduces the number of unnecessary casts in its output, to avoid

confusing the backend C compiler.

Restrict-qualified pointers and pragma directives are the two most common optimiza-

tion hints for C code, and they are fully supported by the Berkeley UPC compiler. Our

translator utilizes information from restrict pointers to make its alias analysis more ac-

curate, and passes the restrict qualifier in the translated code so that the backend com-

piler could also benefit from them. All Berkeley UPC specific pragmas share the prefix

”#pragma bupc”, and any pragma directives not matching this form appear unchanged in

the same relative location in the generated C code.

We use four of the NAS parallel benchmarks (CG, FT, IS, MG) from Table 3.2 to evalu-

ate the potential overhead of our source-to-source translation. From the parallel UPC code

a purely sequential C version is generated by stripping away the UPC features. All refer-

ences to the shared qualifier and the block size are removed, and the THREADS variable

is defined to one while the MYTHREAD variable is defined to zero. Synchronization calls

such as upc barrier are removed, and memory allocation as well as string copy functions

are converted into their C equivalents (e.g., upc alloc becomes malloc, and upc memget

becomes memcpy). Similarly, a upc forall loop is directly translated into a for loop.

The PathScale compiler v2.4 [87] is used for the Opteron cluster, Intel compiler v9.0 [57]

for the Itanium cluster, and IBM XL C v7.0 [110] for the POWER5 cluster. The standard

32

-O3 flag is used on all three platforms.

For reference, we also include the NPB3.2 Fortran/MPI implementation of the bench-

marks, compiled with the Fortran compiler from the above compiler suites using the -O3

flag. Compared to C, Fortran employs much stricter aliasing rules (e.g., arguments to func-

tion calls may not be aliased), which makes it more amenable to compiler optimizations.

To allow for a fair performance comparison between the two languages, we judiciously

apply the restrict qualifiers in both the C and UPC version to assist the compiler’s pointer

analysis. Since the uniprocessor execution time of the four benchmarks, like many sci-

entific applications, is dominated by a few computation loops, software pipelining [68] is

very important to the overall performance. As dependence analysis for C is generally less

precise than that for Fortran, we also assist the optimizer by supplying the ivdep pragma

to loops so that they can be effectively pipelined.

Figure 4.1 presents the results for our experimental configurations. The figure re-

ports normalized performance, by dividing the MFLOP rate of the C/Fortran run over the

MFLOP rate of the UPC run on a given platform; a value greater than one thus indicates

performance superior to UPC. There are no Fortran results for IS because the benchmark is

implemented in C in the standard NAS benchmark release. As the graph shows, the unipro-

cessor performance of C and UPC is very close, with the C code outperforming the UPC

version by approximately 2.5% on average. Since the UPC code contains additional par-

allel constructs that may incur superfluous overhead in serial execution, this suggests that

our compilation framework suffers very little performance loss from the source-to-source

translation. The Fortran code outperforms the C and UPC versions in general, owing to the

fact that Fortran is designed to be more amenable to high degrees of optimization, espe-

33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CG FT IS MG CG FT IS MG CG FT IS MG

Itanium/GM Opteron/VAPI POWER5/LAPI

sp
ee

du
p

ov
er

 U
PC

 c
od

e

C
Fortran
UPC

Figure 4.1: Serial performance comparison: UPC v. C v. Fortran. Class A input is used.

cially for scientific code. The largest performance gap occurs on the FT benchmark, where

the Fortran version outperforms the UPC code by an average of about 50%. This large

gap can be attributed to the different implementation of complex arithmetic. In the Fortran

code, complex numbers are implemented using the builtin complex type, with addition and

multiplication of two complex numbers directly expressed using the language-supplied op-

erators. In the C version on the other hand, the complex number is implemented as a struct

of two doubles, and complex arithmetic operates on the two fields explicitly. Even though

the two versions perform semantically equivalent operations on the complex numbers, the

34

compilers we have tested are much more effective at optimizing the Fortran code.

4.2 Performance of Pointer-to-shared Operations

A pointer-to-shared in UPC needs three logical fields to fully represent the address of a

shared object: thread id, address, and phase. The thread id indicates the

thread that the object has affinity to, the address field stores the object’s local address on

the thread, while the phase field gives the offset of the object within its block. Figure 4.2

demonstrates how the fields in a pointer-to-shared are used to access a shared value.

Thread 1 Thread N -1

Address Thread Phase

0 2addr

Phase Shared
Memory

Thread 0

block
size

start of array object

…

…

Figure 4.2: UPC pointer-to-shared components.

35

When dereferencing a pointer-to-shared, the compiler needs to first determine whether

the shared object is local or remote. A local shared access is thus generally slower than

accessing it through a local pointer, due to the extra branch involved in determining an

object’s locality. Address arithmetic on pointers-to-shared will also be inevitably slower

compared to their counterparts on local pointers, since a pointer-to-shared contains three

fields, all of which may be updated during pointer manipulations. Experienced program-

mers typically avoid this overhead by casting the pointer-to-shared into a local pointer

first before accessing it. From a productivity standpoint, however, it is important to keep

the overhead of these pointer-to-shared operations low, so that programmers would not be

forced to keep two pointers (one local and one global) for the same data. In Chapter 6, we

will show that such overhead can be amortized through compiler partial redundancy elim-

ination; here we present runtime techniques that reduce the individual overhead of these

operations.

By default the Berkeley UPC compiler uses a packed eight byte integer to represent a

pointer-to-shared; this allows pointer-to-shared operations to be more efficiently compiled

since the pointer-to-shared format will fit in the registers of most modern high-performance

computing platforms. Only when an application needs either a large amount of shared

memory (> 4GB per thread) or more than a few thousand threads does a programmer need

to switch to a struct-based representation.

Another important runtime optimization for pointer-to-shared is the ”phaseless pointer”

representation. A UPC pointer-to-shared can be classified into three categories based on its

declared block size: block cyclic for block size > 1, cyclic for block size = 1, and indefinite

for block size = 0. For the frequently used cyclic pointers, which have block size one, the

36

phase field can be eliminated since its value is always zero. Similarly, indefinite pointers

can omit their phase since all elements reside in a single block. Cyclic and indefinite

pointers are therefore named phaseless, and our compiler exploits this knowledge to enable

more efficient operations for them. For cyclic pointers, shared pointer arithmetic can be

implemented with a modulo (for updating the thread id) and a divide (for updating the

address) operation, while for indefinite pointers it can be implemented directly as a regular

pointer addition, as the thread id never changes.

Overhead of pointer arithmetic

0

20

40

60

80

100

120

bl
oc

k
cy

cl
ic

 (D
)

bl
oc

k
cy

cl
ic

 (S
)

cy
cl

ic
 (D

)

cy
cl

ic
 (S

)

in
de

fin
ite

lo
ca

l

bl
oc

k
cy

cl
ic

 (D
)

bl
oc

k
cy

cl
ic

 (S
)

cy
cl

ic
 (D

)

cy
cl

ic
 (S

)

in
de

fin
ite

lo
ca

l

bl
oc

k
cy

cl
ic

 (D
)

bl
oc

k
cy

cl
ic

 (S
)

cy
cl

ic
 (D

)

cy
cl

ic
 (S

)

in
de

fin
ite

lo
ca

l

Opteron/VAPI Itanium/GM POWER5/LAPI

tim
e

(n
s)

Figure 4.3: Performance of UPC pointer arithmetic. (D) denotes dynamic threads, (S) static
threads.

Figure 4.3 presents UPC shared pointer arithmetic performance (ptr + int) on three

37

platforms from Table 3.1, using the same compilation environment as described earlier in

Section 4.1. Two threads were used in the experiments. The variables in the benchmark

are declared to be volatile so that the C compiler will not attempt to optimize away the op-

erations. Due to the phaseless pointer representation, pointer arithmetic for cyclic pointers

is significantly faster than that for the generic block cyclic pointers on all platforms. Fur-

thermore, pointer addition for indefinite pointers is as fast as regular C pointer arithmetic

since they use the same sequence of instructions. For the block cyclic and cyclic pointer

we observe a significant performance improvement moving from the dynamic THREADS

environment to the static THREADS environment. The reason is that both types of pointers

perform modular arithmetic, which can be more efficiently optimized by the C compiler if

the number of threads is a compile time constant (e.g., strength reduced into shift operators

when THREADS is a power-of-two). Thus, for programs that perform a non-trivial amount

of (block) cyclic pointer-to-shared arithmetic, the number of threads should be specified at

compile time. Indefinite pointers, however, are not affected by the dynamic versus static

thread setting.

Figure 4.4 presents the cost of a UPC shared local access (*p) to an eight-byte double.

It is clear from the figure that accessing local data through a pointer-to-shared incurs sub-

stantial overhead due to the extra branch needed to determine the pointer’s affinity. The

optimization framework described in Chapter 6 can help lower this performance penalty by

eliminating some of the redundant locality checks, and an analysis that statically determines

which accesses are guaranteed to be local can also be very profitable. In earlier work, we

have also compared the performance of shared local accesses between the Berkeley UPC

compiler and the HP UPC compiler, and found that the Berkeley compiler is slightly slower

due to the source-to-source translation [25].

38

Overhead of shared local access

0

5

10

15

20

25

30

35

40

45

private
load

shared
local load

private
store

shared
local store

private
load

shared
local load

private
store

shared
local store

private
load

shared
local load

private
store

shared
local store

Opteron/VAPI Itanium/GM POWER5/LAPI

tim
e

(n
s)

Figure 4.4: Performance for UPC shared local access

4.3 Optimizing UPC Forall Parallel Loop

To simplify the task of parallel programming, UPC includes a builtin upc forall loop that

distributes iterations among the threads. The upc forall loop behaves like a C for loop, ex-

cept that the programmer can specify an affinity expression whose value is examined before

every iteration of the loop. The affinity expression can be of two different types: if it is an

integer, the affinity test checks if its value modulo THREADS is the same as the id of the ex-

ecuting thread; otherwise, the expression must be of pointer-to-shared type, and the affinity

39

test checks if the running thread has affinity to this address (i.e., upc threadof(aff exp) is

equal to MYTHREAD.). The affinity expression can also be the continue keyword or

simply omitted, in which case the affinity test is vacuously true and the loop behaves as if it

is a C for loop. A thread executes an iteration only if the affinity test succeeds. Figure 4.5

b gives the semantic definition of the forall loop in part a, where the loop body is executed

only if the affinity test succeeds. The forall loop is a collective operation, which means that

all threads will execute the loop. Its controlling and affinity expressions must also be single

valued [1], meaning that all threads agree on which threads execute each iteration.

UPC forall loops provide a convenient syntactic sugar for thread coordination and the

prevention of inadvertent remote accesses, but its primary drawback is the runtime over-

head incurred by executing the affinity tests in all loop iterations. In a straightforward

translation shown in part b of Figure 4.5, the affinity tests have to be executed on each

iteration by all threads, and the presence of the branches in the loop can also inhibit many

useful loop optimizations. The mod operation in the figure performs modular arithmetic.

Fortunately, while their values naturally change from iteration to iteration, affinity expres-

sions can often be derived directly from loop induction variables; for such common special

cases, we can eliminate the runtime affinity tests by incorporating their thread-iteration

mapping constraints into the loop’s bound and stride.

4.3.1 Affinity Test Removal

The goal of the optimization is to transform the forall loop into an equivalent for loop with

the affinity test eliminated. Our optimization operates on forall loops, and by definition

their lower bound (L), upper bound (U), and step (S) must all be loop invariant. We first

40

upc_forall (i = L; i < U; i+=S; A*i + B)

loop body;

a) Original upc_forall loop

for (i = L; i < U; i+=S)

if (((A*i + B) mod THREADS) == MYTHREAD) {

loop body;

}

b) Straightforward translation

int P = THREADS / gcd(S*A, THREADS);
int start_th = (A*L + B) mod THREADS;
int my_start = forall_start(start_th, S, A, L);
for (i = my_start; i < U; i += S * P)

loop body;

c) Optimized translation

Figure 4.5: upc forall loop affinity test removal.

consider the case when the affinity is an integer expression linear to the loop induction

variable; in other words, it is of the form Ai+B, where i is the induction variable and both

A and B are loop invariant constants. For notational convenience, let K = AL + B, or

the thread that executes the very first iteration of the forall loop, and let T = THREADS.

The sequence of the threads executing the iterations of the forall loop is then {K, K + S ∗

A, K + 2 ∗ S ∗ A, ...} (mod T), since the affinity expression is incremented by S ∗ A in

each iteration. Following the rules of modular arithmetic, the sequence will repeat every

P = T/ gcd(T, S ∗ A) iterations, where gcd is the greatest common divisor function.

41

Furthermore, a thread M will be in the sequence if and only if (M − K) | gcd(T, S ∗ A).

Figure 4.6 illustrates how the formula can help discover the distribution of the forall loop

iterations among the threads. In a), gcd(T, S ∗ A) is 1, so each thread executes every T

iteration of the forall loop. In b), the gcd is no longer 1, and thus only thread 3, 5, and 1

participate in the forall loop, with the sequence repeating every three iterations.

upc_forall (i = 0; i < 100; i+=5; i)

THREADS = 6

50123450

35302520151050

76543210

upc_forall (i = 0; i < 100; i++; 2i+3)

53153153

76543210

76543210

S = 5, A = 1, gcd(T,S*A) = 1, K = 0 S = 1, A = 2, gcd(T,S*A) = 2, K = 3

Nth iter

i

Thread

a) b)

int my_start = forall_start(0, 5, 1, 0);
for (i = my_start; i < 100; i += 30)

int my_start = forall_start(3, 1, 2, 0);
for (i = my_start; i < 100; i += 3)

Figure 4.6: Examples of forall loop iteration to thread mapping. The original forall loop
appears at the top, while the result C code is at bottom.

Once the mapping of thread id to iteration is statically determined, the affinity test can

be eliminated as shown in part c) of Figure 4.5. In the figure, start th stores the id of

the thread executing the first iteration, or the K variable in the previous paragraph. The

42

function forall start computes for a thread the value of i at the first iteration that it

will execute. This can be computed by scanning through the sequence K + S ∗ A until we

find an element equal to MY THREAD. For threads that do not execute the forall loop

at all, the function returns a value larger than U , so that the thread will never enter the

transformed loop. The step of the new loop is changed to S ∗ P , to reflect the fact a thread

is executing the body of the original forall loop every P iterations.

When the affinity expression is a shared address, our optimization first examines the

blocking factor of the pointer-to-shared. If the pointer is indefinite, the affinity test branch

can be trivially hoisted out of the forall loop, since the affinity expression will always fall

on the same thread. If the pointer is cyclic and the index expression is affine (i.e., ai + k),

the affinity expression is equivalent to the integer expression ai + (k + upc threadof(p)),

where the upc threadof library call returns the thread that has affinity to the shared object

pointed to by p. We can therefore apply the same transformation described in the previous

paragraph. Affinity expressions involving block cyclic arrays are currently not supported

by our optimization due to their rare occurrence, but the framework could be extended to

include techniques used by the HPF compilers for block cyclic array distributions [53, 65].

4.3.2 Privatizing Shared Local Accesses in Forall Loops

Another important optimization for upc forall loops is to use the information provided by

the affinity expression to privatize the shared local accesses in the loop, by using a local

pointer to perform the access. If the affinity expression is a pointer-to-shared (&p[exp]),

by definition it must point to a local object inside the loop. Thus, if the expression is

dereferenced, the compiler can directly cast it into a private pointer and save a runtime

43

branch. Furthermore, any shared access q[exp1] inside the forall loop is also local if the

compiler can determine at the program point of the access that 1) exp1 == exp and 2) the

pointers-to-shared p and q have the same layout, i.e., they have the same block size and

upc threadof(p) == upc threadof(q)). An integer affinity expression e is semantically

equivalent to the pointer-to-shared expression &a[e], where a is a cyclic array, and therefore

also satisfies the two properties.

Based on these observations, we develop an algorithm that checks every shared access

in a forall loop to see if it satisfies the two properties. The algorithm currently operates on

cyclic pointer-to-shared expressions, though it could be extended to support block cyclic

pointers. Since the affinity expression cannot be modified inside the loop body, verifying

condition 1 is a simple case of pattern matching for structural equivalence; if the two ex-

pressions contain the same set of terms and operators1, they must produce the same value

since none of the variables are modified in the loop body. Global value numbering can also

be applied to determine if two expressions have the same value.

Condition 2 is trivially true if p and q are arrays, since they both always point to thread

zero. If q is a pointer, however, verifying condition 2 becomes more complicated, since it

could point to any thread prior to entering the loop. If the compiler could determine that

q is never modified inside the loop, it could dynamically check that p and q point to the

same thread before entering the loop, and choose the privatized/non-privatized version of

the loop based on the branch. This transformation has the undesirable effects of increasing

code size, however, and is therefore not enabled by default. An interesting future work

would be to apply static analysis like the one in [113] to track the thread that a pointer-to-

shared points to at each program point.

1The optimizer has simplified expressions into canonical forms at this point.

44

shared int p[N], q[M];

upc_forall (i = L; i < U; i+=S; &p[i])

… q[i] …

a) Original upc_forall loop

int P = THREADS / gcd(S, THREADS);
int start_th = L mod THREADS;
int my_start = forall_start(start_th, S , L);
int *lq = (int *) &q[my_start];
for (i = my_start; i < U; i += S * P)

… lq[i/THREADS] …

b) Affinity test removal + Privatization

Figure 4.7: Privatization of shared local accesses in forall loops.

Once the optimizer determines the two conditions are satisfied, the pointer-to-shared

expression is replaced with an equivalent private pointer as shown in part b) of Figure 4.7.

The index expression of the new private pointer also needs to be updated, since the iteration

space is now a thread’s private portion of the cyclic array.

4.3.3 Experimental Results

A version of the HPC stream triad benchmark [77] is used to evaluate the effectiveness of

our forall optimizations. The benchmark scales and adds two vectors, and stores the results

into a separate vector (a[i] = b[i]+α∗c[i]). The implementation declares three cyclic arrays

45

Stream triad (Opteron/VAPI)

1

10

100

1000

10000

1 2 4 8 16 32
threads

M
ill

io
n

up
da

te
s/

se
c

base - addr
base - int
aff only
aff+local
manual

Figure 4.8: Stream triad benchmark on the Opteron/VAPI system.

to represent the vectors, and uses a upc forall loop to ensure that each thread only performs

computation on its local elements. Each cyclic array contains one million * THREADS

elements. We experiment with both integer and shared address affinity expressions for the

loop.

Figure 4.8 presents the results on the Opteron/VAPI cluster in Table 3.1. The results

from the other two platforms behave similarly and are not shown. Pathscale C compiler

version 2.4 [87] is used as the backend compiler, with the -O3 option. Five configurations

are examined: two base versions compiled without optimization, with one using integer

affinity (i) and the other a pointer-to-shared (&a[i]); an aff-only version that performs only

affinity test removal, and an aff+local version that also performs privatization; and finally

a manual version that uses a for loop with private pointers. For the optimized versions we

46

do not distinguish between integer and pointer-to-shared affinity, since the same code is

generated. Comparing the two base versions, the integer affinity outperforms the pointer-

to-shared affinity even though they produce the same iteration assignments. The reason is

that an integer affinity is converted into a C % operation, while a pointer-to-shared affinity

turns into a runtime function call that checks the pointer’s thread id. Inlining the function

call would help performance in the case when the optimization fails to eliminate the affinity

test (e.g., when the affinity is a non-linear expression).

Removing runtime affinity tests substantially increases the performance of the bench-

mark, delivering a more than 20% speedup for the sequential case. More importantly, it

significantly improves the program’s scalability, since each thread no longer has to execute

iterations that do no useful work other than the affinity tests. Whereas the base versions

scale poorly even with a small number of threads, the optimized output achieves linear

speedup. Privatizing the shared local accesses brings an order of magnitude performance

improvement, since the loop contains minimal amount of computation and thus spends

most of its time on the overhead of shared pointer arithmetic, which is eliminated as part

of the privatization. All three vectors in the loop are privatized by our optimization, thus

making it as efficient as manual tuning.

47

Chapter 5

Optimizing Fine-grained Array Accesses

Efficient communication code generation for loop nests is critical to the performance of

most array-based parallel programs. This is especially important for a PGAS language like

UPC, which supports flexible fine-grained remote accesses for communication. The most

well-known optimization, message vectorization, hoists individual remote array accesses

out of a loop nest by fetching the data using bulk transfers. This transformation, which

can be done either manually or automatically by the compiler, speeds up communication

by amortizing startup overhead and taking advantage of the higher bandwidths realized by

large messages on clusters. Recognized as an extremely useful optimization for message-

passing programs, vectorization has been implemented in optimizing compilers for parallel

programming languages such as HPF and Fortran D [18, 48, 52].

While message vectorization is an effective optimization, it does not exploit commu-

nication overlap. For PGAS programs on modern networks, better performance can be

achieved with a finer-grained message decomposition and aggressive pipelining, using a

48

technique called message strip-mining [54, 105]. While a vectorized loop waits for the

remote memory access to complete before it proceeds with local computation, message

strip-mining divides communication and computation into phases and pipelines their exe-

cutions by skewing the loop. This leads to an increase in the number of messages and thus

message startup costs, but has the potential to reduce communication overhead through the

overlapping of nonblocking send and receive operations with independent computation.

Applying message strip-mining carelessly may result in performance degradation due to

both increased message startup costs and network contention. Furthermore, performance

is directly influenced by application characteristics; the data transfer size and the ratio

between communication and computation affect the amount of available overlap. In this

chapter, we present a systematic approach for evaluating if a vectorizable loop benefits

from message strip-mining based on network parameters and application characteristics.

The model has been incorporated into our compiler’s loop optimization framework for

fine-grained regular accesses. Starting from loop nests with affine shared array accesses,

the optimizer first performs message vectorization, then chooses a good decomposition for

strip-mining based on the performance model.

5.1 Optimizing Regular Communication in Loops

Consider the loop nest in Figure 5.1, where the arrays a and b are local and r is remote.

Figure 5.2 displays the results of applying message vectorization to the loop, which can be

performed either manually by the programmer or automatically by the compiler. As de-

scribed in Chapter 2, the get call performs a nonblocking shared memory read, and a sync

49

call completes the outstanding communication operation. Performance is significantly im-

proved by copying all remote values in one bulk transfer instead of performing a read in

every iteration. One disadvantage with such a transformation, however, is that the proces-

sor must wait for the completion of the remote transfer before proceeding with the local

computation. Figure 5.3 demonstrates the process of message strip-mining, whose goal is

to hide this communication latency. The single bulk transfer from Figure 5.2 is divided into

several blocks based on the strip size S, and the loop is then skewed so that the communi-

cation and computation code can be performed in a pipelined manner.

The computation is not the only source of overlap; as Figure 5.4 shows, loop unrolling

can be additionally applied to allow the communication operations for different strips to be

issued at the same time and increase the amount of overlap (both computation and commu-

nication) available in the unrolled loop body. In the ideal scenario (ignoring the overheads

of initiating and completing remote operations), the communication time of each strip is

completely overlapped with independent computation or communication from previous it-

erations, leaving only the overhead of transferring the very first strip. Because S is typically

much smaller than the total message size N , the maximum performance gain can be sig-

nificant.

5.2 Practical Considerations for Message Strip-Mining

Message strip-mining decomposes the transfer of data into a series of smaller transfers

overlapped with local computation. It therefore could cause performance degradation by

increasing the startup cost of communication. To understand the impact of combining the

50

for(i=0; i<N; i++)
a[i] = b[i]+r[i];

Figure 5.1: Unoptimized loop, where r is re-
mote.

h = get(lr, r, N);
sync(h);
for(i=0; i<N; i++)

a[i] = b[i]+lr[i];

Figure 5.2: Vectorized loop.

h0 = get(lr, r, S);
for(i=0; i<N; i+=S) {

h1 = get(&lr[i+S], &r[i+S], S);
sync(h0);
for(j=i; j<i+S; j++)

a[j] = b[j]+lr[j];
h0=h1;
}
sync(h0);
for (j=N-S; j<N; j++)
a[j] = b[j]+lr[j];

Figure 5.3: Message strip-mining.

h[0] = get(lr, r, S);
for(i=0; i<N; i+=S*U) {

h[1] = get(&lr[i+S], &r[i+S], S);
...
h[U] = get(&lr[i+(U-1)*S],

&r[i(U-1)*S], S);
sync(h[0]);
for(j=i; j<i+S; j++)

a[j] = b[j]+lr[j];
...
sync(h[U-1]);
for(j=i+S*(U-1); j<i+S*U; j++)

a[j] = b[j]+lr[j];
h[0] = h[U];
}

Figure 5.4: Unrolling a strip-mined loop.

transformation, one has to take into account both machine and application characteristics.

Machine Characteristics:

Message transmission time on a cluster can be divided into two components: a per-

message cost affected by the latency of the network, and a per-byte cost affected by the

communication bandwidth of the network. The LogGP [2, 38] model can be used to quan-

tify the costs of both components. As illustrated in Figure 5.5, the end-to-end latency (EEL)

of a message transmission can be approximated by o, the CPU send and receive overhead

51

P0

P1

os

L

or

EEL

Figure 5.5: Traditional LogP model for sending a point-to-point message.

of a message, and L, the transport latency of the network hardware. Other parameters of

relevance are G, the inverse network bandwidth, and g, the minimal gap required between

the transmission of two consecutive messages. The values of these parameters directly in-

fluence the choice of strip size. A higher software overhead decreases the effectiveness of

message strip-mining, since breaking a large message into smaller transfers becomes more

costly. A large g makes unrolling less effective by increasing the latencies of pipelined

accesses. Similarly, a higher peak bandwidth means a larger strip size likely will achieve

better performance.

Application Characteristics: The data transfer size is perhaps the most important factor

in determining the effectiveness of message strip-mining. Since each message incurs a

fixed issuing cost, there exists a minimum size where the message becomes latency bound

and does not benefit from further decomposition. An intuitive rule of thumb is that each

strip transfer should be a bandwidth-bound message, so that the increase in message startup

costs can be compensated by the performance gain from hiding the message transfer time.

Even with a large transfer size, message strip-mining is not useful unless we can dis-

cover enough computation to overlap. In other words, the computation cost of a strip should

52

not be significantly smaller than its communication cost. Loops with heavy computation

overhead should benefit more from message strip-mining, since it allows more commu-

nication latencies to be hidden. Furthermore, a large computation overhead also implies

that a smaller strip size should be used. Since network performance is generally orders of

magnitude worse than CPU performance, it may appear that sufficient overlap could not be

attained without a large amount of computation. This assumption, however, neglects the

cost of memory access. Because remote data is typically transferred by RDMA directly

to main memory (and not the cache), they must then be brought into the cache for further

processing. Cache miss penalties, which are also incurred in the vectorized loop, repre-

sent additional computation overhead that can be overlapped with the nonblocking strip

transfers.

5.3 An Empirical Study for Strip-mining

In this section, we construct a performance model for message strip-mining based on em-

pirical data collected on the target clusters. Ideally, we would like to set up a system of

equations based on the LogGP model to represent the communication costs of a given

loop, then apply the overhead and bandwidth values of the network to solve for the optimal

strip size. Finding the optimal message decomposition is unfortunately NP-complete, how-

ever, as it can be reduced to the classic integer programming problem [35]. Thus, we need

to develop message decomposition heuristics that are easy to implement yet can achieve

significant performance gains over a vectorized loop. A simple decomposition is to make

each block equal-sized, so that the total communication cost for a given loop only depends

on one variable. Even with this simple scheme, solving the above equations to find the

53

optimal strip size is still difficult due to the presence of recurrences. To make things worse,

the LogGP model assumes an “ideal” network with no resource constraints and consid-

ers the parameters to have constant value. In practice, o, g, and G can all vary based on

the message size [56], making the problem even less tractable. Thus, in constructing our

performance model, we directly search for the best fixed message decomposition using syn-

thetic benchmarks on the target platforms. We cut down the search space by considering

only N and S that are powers-of-two.

We implement a micro-benchmark to study the potential for message strip-mining as

well as develop heuristics for guiding the decomposition. Thread zero in the benchmark

copies remote data and performs some computation on each element. The total transfer size

ranges from 1KB to 1MB, while the strip size varies from 512 bytes to half the total transfer

size (i.e., two strips). To study the effects of local computation overhead on strip-mining,

we implement both a “light” and a “heavy” computation version. The light computation

version performs a reduction on the transfered data; this in a sense represents the minimal

amount of computation that can be performed. The heavy computation version calls the

sqrt() function on each array element.

5.3.1 Overall Benefit of Strip-mining

Figure 5.6 shows the maximum speedup achieved by strip-mining for the transfer sizes (x-

axis) examined. The value is calculated by dividing the time of the vectorized loop over the

best execution time achieved for the given transfer size, with or without strip-mining. A

value of 1 thus indicates strip-mining actually hurts performance. The heavy computation

version is used. As the figure suggests, the effectiveness of strip-mining tends to increase

54

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

heavy heavy heavy heavy heavy heavy heavy heavy heavy heavy heavy

1 2 4 8 16 32 64 128 256 512 1024

transfer size (KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

Opteron/VAPI
POWER5/LAPI
Itanium/GM

Figure 5.6: Maximum speedup achieved by message strip-mining, for transfer size from
1KB to 1MB.

with the transfer size, with small message sizes not benefiting from the optimization at all.

For the large message sizes (524KB and 1MB), strip-mining could deliver a nearly 23%

speedup, thus making it a potentially very worthwhile optimization. The POWER5/LAPI

cluster benefits the least from strip-mining, due in part to its high software overhead (nearly

4us) compared to the other networks (about 1us)1. The best performance is achieved on the

Opteron/VAPI system, with a close to 40% speedup for large message sizes. The minimal

transfer size required for strip-mining to become effective is 4KB for the Opteron/VAPI

1 The current GASNet LAPI implementation does not use RDMA, but support for it will be available in
the future.

55

system, 8KB for the Itanium/GM system, and 32KB for the POWER5/LAPI system; the

values reflect how efficient each system is at exploiting communication and computation

overlap.

5.3.2 Effects of Loop Computation Overhead

The effectiveness of message strip-mining depends heavily on whether the vectorized loop

contains a sufficient amount of computation that can be used to hide network latencies.

The cost of bringing the transfered data into memory could be a major component in the

loop’s overall computation overhead. On commodity clusters, the network is not tightly

integrated with the memory hierarchy, and instead uses RDMA operations that bypass the

processor’s cache. Accordingly, the computation cost for the transferred data is composed

of two parts: 1) the cache miss penalties incurred by accessing the transfered data, and

2) the execution time required by the computation itself. While the second component

obviously varies from application to application, the cache miss penalty is an inherent part

of the computation overhead and does not depend on the type of computation performed.

The light computation benchmark thus serves as a good case study as to whether the

local memory overhead provides sufficient overlap for strip-mining. Figure 5.7 presents the

same speedup information as Figure 5.6 on the light version. The results suggest that there

is essentially no limit on the minimum amount of computation a loop must contain before it

can gain from strip-mining; as long as the loop accesses all of the transfered elements, the

cache miss penalties will provide enough overlap. At 1MB, the local execution overhead

accounts for an average of 21% of the benchmark time on the three systems, and strip-

mining is able to achieve a 16% speedup.

56

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

light light light light light light light light light light light

1 2 4 8 16 32 64 128 256 512 1024

transfer size (KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

Opteron/VAPI
POWER5/LAPI
Itanium/GM

Figure 5.7: Maximum speedup achieved by message strip-mining, with light computation.

Comparing Figure 5.6 and Figure 5.7, we observe that the strip-mining as expected

delivers a higher speedup for the heavy computation version, due to the higher amount of

overlap available. More interestingly, the minimum transfer size at which strip-mining be-

comes effective is also affected. While for heavy computation loops strip-mining becomes

effective as early as 4KB, the light version fails to benefit strip-mining until the transfer

size reaches 64KB on two of the networks. This is because in the light computation ver-

sion the memory access time is the only source of overlap, and at a small transfer size it is

negligible compared to the communication latency. Thus, when deciding whether to strip-

mine a loop, the optimizer must also take into account its computation overhead. Since an

57

accurate estimate of a loop’s computation costs is difficult to obtain, especially at compile

time, our optimizer uses a simple model by dividing the loops into computation bound and

communication bound ones. The former uses the model predicted by the light computation

benchmark, while the latter uses the heavy computation version. The model determines the

threshold for strip-mining based on message size.

5.3.3 Selecting the Strip Size

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

heavy heavy heavy heavy heavy heavy heavy heavy heavy heavy heavy heavy

0.5 1 2 4 8 16 32 64 128 256 512 1024

1024

strip size (KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

Opteron/VAPI
POWER5/LAPI
Itanium/GM

Figure 5.8: Speedup achieved by various strip sizes for a 1MB transfer, heavy computation.

Figure 5.8 and Figure 5.9 plot the speedup achieved by varying the strip size for a 1MB

58

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

heavy heavy heavy heavy heavy heavy heavy heavy

0.5 1 2 4 8 16 32 64

64

strip size (KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

Opteron/VAPI
POWER5/LAPI
Itanium/GM

Figure 5.9: Speedup achieved by various strip sizes for a 64KB transfers, heavy computa-
tion.

and a 64KB transfer, respectively. The rightmost value represents the vectorized loop (strip

size == transfer size), and is again used as the baseline for calculating the speedup. We

make the following observations about strip size selection.

For the two networks (Itanium/GM and Opteron/VAPI) that exhibit more potential for

overlap, there exists a wide range of “good” strip sizes. More formally, a good strip size

is defined as one whose performance is closer to that of the best performing strip size than

the vectorized loop. For example, for the 1MB transfer on the Opteron/VAPI system, any

strip size between 8KB and 256KB will give performance that is within 5% of the best,

59

while offering a 30% speedup over the vectorized loop. Similarly, on the Itanium/GM sys-

tem at least any strip size between 16KB and 256KB will offer good performance. This

observation also holds for the light computation version, although the range of good strip

size is narrower since the minimum message size needed to benefit from strip-mining be-

comes higher. This suggests that our performance model does not need to single out the

best strip size, but simply has to find the typically large range of good strip sizes. The

POWER5/LAPI system does not follow this rule, however, as the best decomposition strat-

egy there is to have a small number of strips (2 or 4), even for transfers as large as 1MB.

Flood bandwidth

0

500

1000

1500

2000

2500

3000

3500

25
6
51
2
10
24
20
48
40
96
81
92
16
38
4
32
76
8
65
53
6

13
10
72

26
21
44

52
42
88

1E
+0
6

2E
+0
6

size (bytes)

M
B

/s
ec

POWER5/LAPI
Opteron/VAPI
Itanium/GM

Figure 5.10: Flood bandwidth for blocking gets.

This apparent contradiction can be explained by examining the bandwidth of the three

60

networks in Figure 5.10. The POWER5/LAPI cluster has a significantly higher peak band-

width compared to the other two clusters; this also means, however, the two networks

will saturate to the peak bandwidth at much lower message sizes. Peak bandwidth on the

POWER5/LAPI system, on the other hand, is not approached until 256KB, and the band-

width at 256KB is in fact 80% higher compared to the bandwidth at 128KB. For this cluster,

messages smaller than this threshold are unlikely to benefit significantly from strip-mining,

since the finer-grained decomposition does not enjoy the additional bandwidth provided

for large messages. If the transfer size is increased to 8MB on the POWER5/LAPI cluster,

however, we again observe a wide range of good strip sizes.

We now present a heuristic for picking a good strip size. The smallest message size

Speak at which the communication layer saturates to the peak bandwidth serves as a good

strip size for our transformation. Aggregation beyond this point no longer improves band-

width, so for large messages it is typically profitable to divide them into Speak chunks and

overlap them with computation. The increased software overhead is insignificant, since

each strip is still transfered at near peak bandwidth. Thus, for messages greater than Speak

our model selects it as the strip size. Messages below this threshold may still benefit from

further decomposition, if there is sufficient amount of overlap to offset the bandwidth loss.

For these small to medium size messages we set the number of strips to be two in an effort

to simplify the model while still achieving overlap. Finally, we do not perform strip-mining

for any transfer size that does not benefit from it in our experiments.

This performance model can be constructed on a platform with only three parameters

Speak, the peak bandwidth, Mheavy, the strip-mining threshold for heavy computation, and

Mlight, the strip-mining threshold for light computation. The latter two values are the

61

Opteron/VAPI

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1 4 16 64 25
6

10
24

transfer size (KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

exhaustive - light
heuristic - light
exhaustive - heavy
heuristic - heavy

Figure 5.11: Accuracy of strip-mining performance model for the Opteron/VAPI cluster.

smallest transfer sizes at which strip-mining first becomes effective. We measure Speak

to be 256KB for the POWER5/LAPI cluster, 32KB for the Itanium/GM cluster, and 32KB

for the Opteron/VAPI cluster based on experimental results. Figure 5.11, 5.12, and 5.13

compare the speedup achieved by our heuristics versus that obtained via exhaustive search.

Despite our model’s simplicity, it is able to approach the maximum speedup on all three

systems, and in nearly all of the cases the model’s performance improvement is at least

50% to that of exhaustive search. The largest error margin tends to occur at the medium

size transfers, due to the higher degrees of performance variation among the different strip

sizes. The model is highly accurate for small transfers, since they either do not benefit from

62

POWER5/LAPI

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2

1 4 16 64 25
6

10
24

transfer size(KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

exhaustive - light
heuristic - light
exhaustive - heavy
heuristic - heavy

Figure 5.12: Accuracy of strip-mining performance model for the POWER5/LAPI cluster.

strip-mining at all or need only a small number of strips. The model is also effective for

large transfers, for which there is a long range of good strip sizes to pick from.

5.3.4 Effects of Unrolling

As mentioned previously, loop unrolling could expose more potentials for overlap by in-

creasing the number of messages that are simultaneously issued. Large unroll depths, how-

ever, may not be desirable in practice due to network limitations. In other words, we have

to exploit the tradeoff between the two communication schedules shown in Figure 5.14. To

63

Itanium/GM

1

1.05

1.1

1.15

1.2

1.25

1 4 16 64 25
6

10
24

transfer size(KB)

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

exhaustive - light
heuristic - light
exhaustive - heavy
heuristic - heavy

Figure 5.13: Accuracy of strip-mining performance model for the Itanium/GM cluster.

study the effects of unrolling, we modify the micro-benchmark to also perform unrolling,

by dividing the loop into U equal-sized chunks and pipelining their execution. The value

of U is varied from 2 to 128. Experimental results suggest that additional unrolling further

improves performance over strip-mining by 1-2% , and the best unroll depth is typically 8

to 16. Since the performance benefit accrued from unrolling is relatively small, we do not

consider unrolling in the performance model.

64

init (S0);
init (S1);
…
init (SN);
sync (S0);
compute (S0);
…
sync (SN);
compute (SN);

init (S0);
init (S1);
sync (S0);
compute (S0);
init (S2);
sync (S1);
compute (S1);
…
sync (SN);
compute (SN);

Strip-mining Unroll + Pipelining

Figure 5.14: Communication schedule for strip-mining and unrolling.

5.4 Implementation

In this section, we summarize the structure of our loop optimization framework. We an-

alyze and transform programs written in a shared memory style, with fine-grained remote

array accesses. Message vectorization is first applied to singly nested loops, and the vector-

ization candidates are indefinitely blocked UPC arrays (i.e., all elements reside on the same

thread). After the loop has been normalized, the analysis walks through the loop expres-

sions and builds for each distinct array symbol a (lo, up) bounding box for its index values.

For example, if ar[i] and ar[i + c] are both present in the loop body, a region is computed

for the symbol ar by taking the union of the ranges projected by the two index expressions.

Vectorization inhibiting loop-carried array dependences are detected by intersecting the def

and use sets of the loop.

Once a loop is vectorized, the analysis next determines whether it could further bene-

fit from strip-mining. Since strip-mining does not change the iteration order of the loop,

65

any vectorizable loop can be strip-mined as long as the true dependence between the bulk

transfer and the local computation code is preserved. In practice, this means if ar[i + k]

appears in the vectorized loop, any strip transfer would need to fetch k additional elements.

Since important parameters such as transfer size and loop computation overhead may not

be known at compile time, our framework uses a combination of compile time analysis and

runtime support to dynamically perform strip-mining. The compiler generates template

code that resembles the code in Figure 5.3, except that the strip size is computed by invok-

ing a get strips function before entering the loop. The function takes in as arguments

the loop’s transfer size as well as a flag indicating whether the loop is communication or

computation bound. With these two parameters, the runtime analysis can calculate the strip

size based on our performance model. The computation overhead is currently estimated by

counting the number of array references and reduction operations in the loop. If this count

is above a user tunable threshold, the loop is considered to be computation bound, and vice

versa. All benchmarks we have experimented with so far have only communication-bound

loops, and this rough estimate of computation overhead satisfies the optimization’s needs.

If more accuracy is desired, we can peel off a few iterations of the loop and measure their

execution overhead directly. The generated loop itself is guarded by a conditional so that

strip-mining can be disabled when it is not profitable.

Non-unit stride loops may also benefit from strip-mining, although the use of VIS ag-

gregation calls described in Section 2.2 could result in better performance since they avoid

copying extraneous data. Thus, we currently do not enable strip-mining for non-unit stride

array accesses. Deeper loop nests with multi-dimensional arrays are in a sense already

strip-mined, as there is natural overlap between the iterations of the outer loops. Long

innermost loops, however, may still benefit from further blocking. Accordingly, we also

66

vectorize and strip-mine innermost loops with unit stride.

5.5 Experimental Results

We validate the strip-mining transformation on two of the NAS parallel benchmarks, FT

and IS. The original UPC implementations use bulk remote transfers, which we manually

convert into shared memory style code so that they could be analyzed and optimized by the

loop framework. Specifically, the FT benchmark performs an all-to-all exchange followed

by a local transpose, and the modified code merges the two steps into a single loop with

shared array accesses. For the IS benchmark, the all-to-all communication is combined

with the local computation code that determines key population. The other NAS bench-

marks in Table 3.2 perform strided accesses to multi-dimensional arrays, and the individual

chunks are too small to benefit from strip-mining. Similarly, the fine-grained benchmarks

do not contain vectorizable loops and are also not used in the experiments.

Figure 5.15 presents the performance results2. Two version of the benchmarks are

compared: the baseline that uses manually vectorized blocking communication, and the

fine-grained version that has been vectorized and strip-mined based on our performance

model. Speedup is calculated by dividing the MFLOPS rate of the strip-mined version over

that of the baseline code. Class A input is used for FT and class B is used for IS. Our strip-

mining transformation is effective on the FT benchmark, achieving close to 20% speedup

on all three clusters. Since the transfer size is quite large for this benchmark3, strip-mining

is able to overlap the all-to-all communication latencies with local computation, while still
232 thread results on the Itanium/GM system are not shown, as both benchmarks fail to scale with or

without our optimizations.
3128MB/(THREADS ∗ THREADS) for our input configuration.

67

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Opteron/VAPI Itanium/GM POWER5/LAPI Opteron/VAPI Itanium/GM POWER5/LAPI

FT IS

sp
ee

du
p

ov
er

 v
ec

to
riz

ed

Figure 5.15: Speedup for message strip-mining on two NAS benchmarks.

68

amortizing the costs of increased message rate. Furthermore, strip-mining becomes more

effective as the number of node involved in the global exchange increases, since it avoids

the bandwidth bottleneck associated with the blocking all-to-all exchange.

For the IS benchmark strip-mining is also effective at hiding communication latency

on the Opteron/VAPI and the Myrinet/GM cluster, achieving a more than 10% speedup in

many cases. The transformation, however, suffers a substantial performance slowdown on

POWER5/LAPI, due to an increase in the program’s barrier synchronization time. Since

each node on that cluster is an eight-way SMP, all threads will run on the same node for

executions with less than or equal to eight threads. The increase in the number of messages

caused by strip-mining leads to contention on the network interface, and the resulting load

imbalance in turn aggravates the synchronization time. The FT benchmark is less suscep-

tible to this issue, as there exists more computation available to be overlapped.

69

Chapter 6

Optimizing Fine-grained Irregular

Accesses

Fine-grained accesses are inherently expensive operations on clusters with high network

latency, and scalable PGAS applications typically use bulk memory copies rather than in-

dividual reads and writes to the shared space. Optimizations such as message vectorization

in the previous chapter can also automatically aggregate regular array accesses in loops.

Fine-grained sharing, however, is still useful for scenarios such as dynamic load balanc-

ing, event signaling, and distributed hashtables. These common irregular communication

patterns are usually not amenable to our loop-based optimizations since they either use

pointer dereferences or have dynamic access patterns (e.g., hash lookup). Manual coars-

ening of the fine-grained accesses into bulk communication is possible, but often requires

non-trivial changes to the algorithm and data distribution. Thus, compiler algorithms that

decrease the number, reduce the volume, and hide the latencies of the message traffic for

70

irregular applications can be very beneficial.

In this chapter, we describe an optimization framework for fine-grained irregular UPC

applications. Using the SSA representation from the Open64 compiler, our analysis can

support both pointer and array-based shared memory accesses. First, we propose a sim-

ple SSA-based partial redundancy elimination (PRE) algorithm to optimize the expensive

shared pointer arithmetic operations in UPC. The algorithm is next extended to generate

split-phase communications for shared read expressions by propagating their init operations

upwards in the control flow graph. For remote writes the analysis applies a path-sensitive

algorithm to propagate their sync operations downward. Finally, a coalescing optimization

combines the nonblocking communication calls generated by the split-phase communica-

tion analysis to reduce the number of messages and thus save on message startup overhead.

6.1 Algorithm Overview

The candidates for our optimizations are shared pointer arithmetic and accesses in UPC.

Pointer-to-shared variables in UPC are almost as expressive as normal C pointers, and can

generally appear anywhere in the code where it is legal for a C pointer to appear. Within the

Open64 framework, the Berkeley UPC translator extends the type system and uses the same

internal program representation for shared expressions, which are distinguished based only

on their types. This design decision allows us to transparently reuse some of the analyses

and the optimizations already present in the framework.

The analyses presented in this chapter are performed on the existing Hashed SSA

(HSSA) program representation in Open64 [30]. This representation uniformly handles

71

both scalar variables and indirect memory references, and allows a transparent extension

of optimization passes developed for scalar variables to handle indirect accesses, e.g.,*p,

p[i], **p, p->x. HSSA uses a global value numbering approach to build a sparse

program representation that captures the aliasing information for scalar and indirect mem-

ory reference (both pointer and array) expressions.

We present the following analyses: 1) partial redundancy elimination (PRE) for pointer

arithmetic on shared types and shared memory accesses; 2) split-phase optimizations to

separate the initiation of a memory access from its completion; and 3) a coalescing opti-

mization that combines individual messages.

While Open64 includes a powerful PRE optimization [29] (SSAPRE) in its global op-

timizer, for practical reasons our optimization is implemented as a separate pass. Since

the cost of a remote load/store is orders of magnitude slower than a local one, our analysis

must go beyond redundancy elimination and apply communication optimizations such as

split-phase accesses and coalescing. In addition, the SSAPRE implementation does not

correctly preserve the type information associated with the expressions it eliminates. This

type information is needed in a later compiler pass that generates runtime calls. While our

optimization is not as powerful as SSAPRE and might miss some optimization opportu-

nities, it handles uniformly both pointer-to-shared arithmetic and load/store operations on

shared data. We have found it to work well in practice.

The goal of the split-phase optimizations is to separate the initiation of a communi-

cation operation (get, put) as far apart from its synchronization (sync) as possible, while

preserving data and control dependencies. This minimizes the chance that a sync call will

waste time blocking for completion, and allows other communication and computation to

72

be overlapped with the latency of the remote access. In the case of remote reads, downward

code motion of syncs is limited by the fact that the value will immediately be needed in the

absence of code scheduling, an optimization generally ineffective at the source level. Up-

ward code motion of the get operations is not subject to such constraint; we can “prefetch”

the remote value by issuing the initiation earlier in the program. A reverse situation applies

for remote writes. While the upward movement of the initiation is limited by the avail-

ability of the rhs value, we can still generate split phase communication by moving the

synchronization operation later in the program.

6.2 Optimizing Shared Pointer Arithmetic

The analysis begins with a mark phase that iterates through all statements in a function and

finds distinct shared pointer arithmetic expressions. HSSA’s global value numbering uses

a single node to represent expressions that compute the same value, which makes it trivial

to identify the static occurrences of an expression. If the expression is computed more than

once in the program, we consider it to be potentially redundant and determine the earliest

point in the function where the expression can be computed. This can be done in two

steps. First, we collect the definition point for all variables and indirect loads that appear in

the expression; a definition point can either be an assignment that explicitly redefines the

variable, a statement that may redefine a variable (e.g., function calls), or a φ-statement in

SSA. Because the program is in SSA form, every variable and indirect load is guaranteed

to have a single definition that must dominate it. If a variable is never defined inside the

function, we set its definition point to be the function entry point. In the second step,

we perform a merge operation on the collection of definition points to find the one that is

73

i2 = …

p1 = foo();

i3 = Φ(i2,i1)

… *(p1+i3)

… *(p1+i3)

i2 = …

p1 = foo();

i3 = Φ(i2,i1)
t = p1+i3

… *(t)

… *(t)

Def point for (p1+i3)

After OptimizationBefore Optimization

Figure 6.1: Redundancy elimination for shared pointer arithmetic.

dominated by all of the rest (i.e., it occurs last). This point serves as the single definition

for the shared pointer arithmetic expression, since at this point the values of all variables

used by the expression have become available.

The use-def information extracted from the SSA form is all that is needed for our op-

timization. Figure 6.1 illustrates the transformations of our algorithm. In the example,

the shared pointer arithmetic expression p + i can be computed immediately after the φ-

assignment to i. We place the original expression there and assign its value to a newly cre-

ated temp variable. All occurrences of the expression are then replaced with the temporary.

While this optimization is not always profitable (e.g., the occurrences of the expression

may all be on different paths), the speculation is safe since pointer arithmetic operations

74

will not raise exceptions. Note also that our approach can handle generic multi-term pointer

arithmetic expressions such as p+i+j.

6.3 Split-phase Communication for Reads

The first step of the analysis is similar to the previous case, as we also compute the single

definition point for every shared load. A major difference, however, is that we cannot sim-

ply place the dereference operation at the “address” definition point, since it may effectively

place communication on a path that does not perform it in the original code. Communi-

cation operations on invalid addresses will generate runtime exceptions, and speculative

communication movement is thus unsafe. Furthermore, get in our communication system

uses RDMA to copy remote data directly into a stack-allocated temporary. All outstanding

nonblocking reads must be synchronized before a function returns to avoid memory cor-

ruption, even if the value is never used. The spurious message traffic can have a significant

performance penalty that outweighs the benefits of the optimization.

To prevent speculative code motion, we rely on the concept of anticipated expres-

sions [80]. An expression is anticipatable at program point p if every path from p to

exit evaluates the expression, with nothing in between that could alter the value of the

expression. To achieve safe code placement, a shared read e must be anticipatable at a

communication point, or the program point where a get call is inserted. We start by in-

serting exactly one communication point cp in every basic block that contains uses of e. A

communication point is either located at the top of its basic block, or right after the defi-

nition point if it is contained in the block. Correctness is guaranteed if a get is placed at

75

foo();

… *p

upc_barrier;

… *p

… *p

BB1 Def pointBB1 Def point
Comm Point

a) b)

… *p
Comm Point

BB2

Comm Point

Figure 6.2: Split-phase analysis for reads. Communication points correspond to gets, actual
use syncs.

each cp, as every cp has the property that it is dominated by the definition point and that

e is anticipatable at cp. Such code generation, however, does not maximize the amount of

overlap; for example, in part a of Figure 6.2 it is safe to place the communication before

the branch, as ∗p is anticipatable at this point. We solve this problem with a breadth-first

postorder traversal of the basic blocks that propagates communication points upward using

the following rule: if all of a basic block bb’s successors have a communication point, the

communication points are merged into one and moved to bb. Thus, part a of figure 6.2 re-

quires only one communication point in BB1, while part b needs two since not all children

of BB1 and BB2 have communication points.

Once the locations of the gets are determined, the corresponding syncs are inserted

76

immediately before every use of the expression. Synchronization generation is suppressed

if the sync can be statically proven to be redundant (e.g., it follows another sync for the get

in the same basic block). To ensure that no nonblocking calls are synchronized more than

once, the handle is invalidated after each sync call.

6.4 Split-phase Communication for Writes

Input: a shared write w of the form exp = ...

for every statement s after w in the same block do
if s uses or modifies exp then

insert sync for w before s ;
return ;

end
end
set : a set of basic blocks;
add to set the successors of w’s basic block;
while set is not empty do

Remove a basic block bb from set;
if bb is seen then

continue;
end
for every statement s in bb do

if s uses or modifies exp then
insert sync for w before s;
goto while loop;

end
end
Add bb’s successors to set;

end

Algorithm 1: Optimizing shared writes

A different algorithm is needed for remote writes, primarily because the HSSA repre-

77

sentation does not provide the def-use relation that associates a definition with all of its

uses and killing definition. Instead, we employ a path-sensitive analysis that minimizes the

number of syncs inserted. For each shared write w, our analysis examines paths leading

from the statement to function exit, using the rules shown in Algorithm 1. If a statement

that may reference or modify the shared location is encountered, we place a sync before the

statement and terminate the analysis for the current path, to prevent the insertion of redun-

dant syncs in subsequent blocks. For example, in part b of Figure 6.3, no sync is needed in

BB1, since the shared write can never reach the block without encountering an earlier sync

(marked by the sync point). Since for each write a basic block will be examined at most

once, the analysis has a O(n2) running time, where n is the number of expressions. Finally

if a path reaches the exit node, a sync will be issued at function exit (see Figure 6.3(a)

for example). Once the sync points are determined, a put is inserted to replace the shared

write.

In general, our algorithm will attempt to push the synchronization as far away as pos-

sible from the initiation of the write, with the exception of loops. Our analysis stops the

forward code motion when encountering a loop, to avoid executing a sync in every it-

eration. Similarly, the algorithm avoids propagating sync along the loop back edge, to

preclude the error of issuing the operation prior to the corresponding put. Loop-invariant

code motion is applied instead in the cases where the shared write can be hoisted out of the

loop. Redundant writes can be optimized by the standard dead-store elimination algorithm

in Open64.

78

*q = …;

upc_barrier;

Exit

*q = …;

Exit

foo();

a) b)

Sync Point

Sync Point

bar(); foo();
Sync Point

Sync Point

BB1

Figure 6.3: Split-phase analysis for writes.

6.5 Coalescing Communication Calls

The split-phase placement analysis optimizes shared accesses individually to hide commu-

nication latencies through overlapping. Message pipelining and communication and com-

putation overlapping, however, are not the only ways to reduce communication overhead;

by combining the small gets and puts into larger messages, one can save significantly on the

per-message startup overhead. Therefore, following the split-phase analysis, we perform

another optimization pass to coalesce communication operations.

For remote reads our analysis considers as coalescing candidates get calls that share

the same communication point; in other words, the gets appear consecutively (pipelined)

79

in the program without other intervening statements. For each communication point, the

algorithm coalesces pair-wisely the accesses get(addr1) and get(addr2), where addr1 and

addr2 are the shared source addresses. Figure 6.4 illustrates the code transformation for

coalescing.

p = foo();

a). Original UPC code b). After split-phase

= p x;
= p y;

= p y;
= p x;

p = foo();
h1 = get(&t1, &p x, 8);
h2 = get(&t2, &p y, 8);

sync(h1);
= t1;

sync(h2)
= t2;

sync(h2);
= t2;

sync(h1)
= t1;

p = foo();
h = get(&t, &p->x, 16);

sync(h);
= t[0];
= t[1];

sync(h);
= t[1];
= t[0];

c). After coalescing

shared struct { double x; double y;} *p;

stack var: double t1, t2 stack var: double t[2]

Figure 6.4: Compiler directed coalescing.

Since our framework handles both pointer based (p→x) and array based (a[i]) accesses,

it is not always possible to determine whether two reads can benefit from coalescing. If it

can be statically determined that addr1 and addr2 belong to the same processor, profitabil-

ity for coalescing depends on the distance between the two addresses. Specifically, there

are three methods for fetching the remote data: pipelining the two gets, static coalescing

80

using a single transfer to copy the bounding box, and dynamic coalescing using GASNet

VIS calls [17], which performs runtime aggregation using active messages. We use micro-

benchmarks to determine the tradeoffs between coalescing and pipelining on a network.

Figure 6.5 shows the performance difference between pipelining and coalescing for the

Opteron/VAPI and the Itanium/GM cluster. The micro-benchmark compares the different

methods for fetching two remote doubles with varying stride between them. We choose

eight byte as the transfer size since it is the most common access granularity for irregular

UPC applications. For reference we also include the performance for issuing two blocking

gets. As the figure shows, static coalescing (bounding) performs best when the distance is

small, though its performance diminishes once the stride grows to beyond 1KB, due to the

extraneous data being copied. Dynamic coalescing, on the other hand, performs slightly

worse than pipelining due to the small message count. Based on the results, we apply

static coalescing for any two gets that belong to the same processor and have a less than

1KB distance between them. Pipelining is used if the locations of the addresses can not

be resolved statically; while dynamic coalescing may become faster with a large message

count (as we will see in Chapter 7), in our experience it is rare to find more than a handful

of gets at a communication point.

The algorithm for coalescing remote writes is similar to that of reads, except that co-

alescing is only performed on puts that access contiguous memory locations (i.e., con-

secutive struct fields or array elements). The reason is that coalescing individual writes

into a single contiguous store may cause spurious updates to memory locations that should

not be modified. In [114], Zhu and Hendren present an algorithm capable of coalescing

non-contiguous write operations to struct fields, by first fetching the “filler” fields in be-

81

Coalescing Performance Model -- Opteron/VAPI

10

12

14

16

18

20

22

16 32 64 128 256 512 1024 2048 4096
stride (bytes)

tim
e

(u
s) blocking

runtime
pipeline
bounding

Coalescing performance model -- Itanium/GM

15

20

25

30

35

40

45

16 32 64 128 256 512 1024 2048 4096
stride (bytes)

tim
e

(u
s) blocking

runtime
pipeline
bounding

Figure 6.5: Performance model for fine-grained coalescing.

tween that are not written in the original program, then writing the entire struct back. This

transformation is unsafe for SPMD programs, since other threads may be simultaneously

updating the filler fields in the struct.

6.6 Example

Figure 6.6 provides a concrete example of how our compiler automatically performs the

communication optimizations. The code is extracted from the psearch benchmark in Ta-

ble 3.2, except that variable names were shortened to fit in the figure. The shared arithmetic

expression pool[i], which is computed five time in the original program, has been replaced

with a temporary variable, eliminating all redundant address computations. The three in-

dividual reads following the lock operation are coalesced to reduce their communication

overhead, as they access fields in the same struct. The optimization also correctly con-

forms to the UPC memory model by not issuing any of the gets before the lock call.

82

struct node_t {
int workAvail;
int local;
int sharedStart;
…

};

typedef struct node_t Node;
shared Node pool[THREADS];

int steal(Node*s, int i, int k) {

int obsAvail = pool[i].workAvail;
upc_lock(pool[i].stackLock);
victimLocal = pool[i].local;
victimShared =

pool[i].sharedStart;
victimWorkAvail =

pool[i].workAvail;
…

/* local storage for coalesced gets */
char _CSE4[12];

/* _ADD1 pool[i] */
_ADD1 = UPCR_ADD (pool, 480048, i);
_sync7 = UPCR_GET(

&_CSE5, _ADD1, 0, 4);
UPCR_SYNC (_sync7);
obsAvail = _CSE5;
_sync9 = UPCR_GET (

&_lock8, _ADD1, 40, 8);
UPCR_SYNC (_sync9);
UPCR_LOCK (_lock8);
_sync10 = UPCR_GET (

&_CSE4, _ADD1, 0, 12);
UPCR_SYNC(_sync10);
victimLocal = *(int*) (_CSE4 + 4);
victimShared = *(int*) (_CSE4 + 8);
victimWorkAvail = *((int*) _CSE4);

Original UPC Code Optimized C output

Figure 6.6: Sample code from optimized programs.

6.7 Experimental Results

We evaluate the effectiveness of the optimizations on the five communication-intensive

UPC benchmarks with fine-grained accesses from Table 3.2. The benchmarks were writ-

ten by researchers outside of our group and reflect the kinds of fine-grained communica-

tion that is present in larger applications during data structure initializations, dynamic load

balancing, or remote event signaling. Figure 6.7 presents the speedups achieved by our

optimizations over the unoptimized version of the benchmarks. The speedup is measured

by (Tbase − Topt)/Tbase, so that a value greater than zero indicates that our optimizations

83

improve performance. Each benchmark is discussed in more details below.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

barnes gups mcop psearch sobel

Itanium/GM
Opteron/VAPI
POWER5/LAPI

Figure 6.7: Optimization speedup, measured as fraction over unoptimized version.

Barnes: The program performs one tree traversal per body in order to compute the in-

teractions. Written in shared memory style, communication in this program is unstructured

and involves many locking operations that can limit the effectiveness of communication

optimizations. The most effective optimization for this case is coalescing, and in several

instances accesses to fields within a particle were combined into a single call. The opti-

mizations are effective on all platforms, achieving 22% speedup on average.

Gups: The read/modify/write loops in the benchmark are manually unrolled to allow

for communication overlap. Due to the presence of indirect memory accesses, neither

84

redundancy elimination nor message coalescing could be applied, and the benchmark only

benefits from split-phase accesses. Our optimizations improve the benchmark’s running

time by an average of 19% on the three systems. The least improvement is observed on

the POWER5/LAPI cluster, as the lack of RDMA support on the network makes split-

phase accesses less effective. Furthermore, since each node on that system is an eight-way

SMP, on higher processor count we observe the effects of contention on the node’s network

interface. The best improvement is observed on the Opteron/VAPI cluster, with an average

improvement of 27%.

Mcop: In this benchmark, the matrix data is distributed along columns, and commu-

nication occurs in the form of accesses to elements on the same row. Most of the benefits

come from both redundancy elimination and nonblocking communication, as the inner loop

of the benchmark contains several shared scalar reads that can be pipelined. Our optimiza-

tions improve the execution time by an average of 38%.

Psearch: This benchmark benefits the least from optimizations, since communication

occurs only during work stealing part of the implementation. The trees are replicated across

processors and the benchmark spends only a small fraction of the total running time per-

forming work stealing. The small performance improvement comes primarily from the

elimination of redundant shared pointer arithmetic. Our optimizations improve the exe-

cution time by an average of 1.5% across all platforms and processor configurations. No

speedup is observed on the POWER5/LAPI system, as the large discrepancies between the

computation and communication speed makes work stealing not worthwhile.

Sobel: Our optimizations are able to perform read pipelining as well as redundant

communication and pointer arithmetic elimination. This benchmark exhibits the highest

85

speedup under the optimizations, as its performance bottleneck is in a short inner loop

that is effectively optimized by our compiler. Our techniques improve execution time by

an average of 48%, with a maximum of over 80% on the POWER5/LAPI system. The

speedup decreases at higher thread count due to increased network contention, since the

communication volume for each thread remains unchanged due to the data layout.

6.8 Application Study

Experimental results from the previous section show that our framework can deliver sig-

nificant speedup on fine-grained application kernels that are typically a few hundred lines

in length. Furthermore, all three optimizations contribute to the reduction of the program’s

execution time. Here we present a major case study of one complete scientific applica-

tion written in UPC, a CFD code developed at the Army High Performance Computing

Research Center. The application combines automatic mesh generation with a fluid flow

solver, and most of the communication takes place during mesh refinement as updates to

dynamic shared data structures. This code provides an ideal optimization target for our

framework, because it was originally developed for the Cray X1E [36], a vector supercom-

puter with hardware support for fine-grained remote accesses. As such, it contains a large

number of fine-grained irregular accesses, in loops with dynamic trip counts that are dif-

ficult to vectorize. Achieving good performance on clusters for this program can thus be

challenging.

The experiments were performed on three different clusters at the center. Two different

setting were compared, one with and the other without our optimizations. Sixteen threads

86

Execution time (16 threads)

0 500 1000 1500 2000

Cray XT3

Opteron/VAPI

Opteron/GM

time(seconds)

opt
base

Figure 6.8: Performance on a CFD application.

were used in the experiments, and the benchmark executes ninety time steps. Figure 6.8

presents the results. Our optimizations are able to reduce on average about 10% of the total

execution time. If we focus on the communication phase of the application that performs

mesh refinement and coarsening, the reduction in running time is improved to 30%. We are

not able to produce a detailed performance analysis due to lack of source code access, but

the results suggest that our framework can be effective even for a large application written

in shared memory style.

87

Chapter 7

Optimizing Bulk Communication

In the previous chapter, we presented a SSA-based optimization framework that automati-

cally performs PRE and generates split-phase communication for individual gets and puts.

The optimizations are very effective for fine-grained accesses, but a successful optimiza-

tion framework also needs to support the bulk communication routines that most well-tuned

PGAS programs use to amortize the high remote access latency on clusters. Extending our

static analysis to support bulk memory transfer proves to be more difficult, since a bulk

access could potentially touch arbitrary memory locations (the size of the transfer may not

be known statically, and the starting pointer address could alias with other variables) and

may not be safely reordered with other statements. Runtime support is thus often required

in order to overcome the limitation of static analysis for scheduling bulk communication.

In this chapter, we present a runtime framework for automatic generation of nonblock-

ing communication in UPC programs. Our system intercepts blocking bulk communication

calls and aggressively reschedules and transforms these operations. Remote puts are syn-

88

chronized on-demand when a synchronization operation or other conflicting accesses are

encountered. Remote gets are automatically prefetched by the runtime based on past access

history. To further improve performance, the runtime automatically performs aggregation

and selects the most efficient communication primitives available for special patterns such

as strided accesses. We also present a number of techniques that help reduce the amount

of runtime overhead associated with conflict checking as well as message initiation and

synchronization.

7.1 Design and Implementation

The basic principle of communication overlapping is to issue the initiation of a commu-

nication operation as early as possible in the program schedule and the completion of the

operation as late as possible. The constraints on the placement and scheduling of these

operations are determined by application data dependencies. The candidates of our opti-

mizations are the upc memget and upc memput communication calls in Figure 7.1. Both

calls are part of the standard UPC library and perform semantically blocking memory-to-

memory operations with relaxed memory consistency; the former copies (remote) shared

data into the thread’s private address space, while the latter updates (remote) shared data

with contents from its private buffer. The upc memcpy call is also handled in the special

case where the source or destination is local, by rewriting it to the appropriate upc memget

or upc memput call at runtime.

At runtime, any program path between two synchronization events becomes an opti-

mization region. Most UPC programs use barriers to perform synchronization, but any

89

void upc_memget (void * dst, shared void * src, size_t nbytes);

void upc_memput(shared void * dst, void * src, size_t nbytes);

void upc_memcpy(shared void * dst, shared void * src,

size_t nbytes);

a) Bulk communication calls in UPC

for(j=0; j<JMAX; j++)
{

upc_memget(&backsub_info_priv_d(c,j,0,0),
&rhs_th_d(c,1,j+1,1,0),
(sizeof(double)) * BLOCK_SIZE * KMAX);

}

b) Example of an aggregation region

Figure 7.1: Candidates for our nonblocking optimization.

statements that imply a strict memory access (e.g.,upc lock library call) are also con-

sidered synchronization events. We monitor the sequence of communication operations

(source/destination/size) within one optimization region. For any blocking communication

call within a region, we decouple the initiation of the operation from its completion. Ini-

tiations of put operations are executed in the same program order, while their completions

are dynamically delayed in the execution path until a synchronization event or conflict-

ing operation is encountered. Initiation of get operations is speculatively executed at the

synchronization point directly preceding the operation in the execution path, while their

completion is executed in program order. For the case of gets the operation of our runtime

90

is equivalent to speculative prefetching.

Data consistency and dependence is preserved by a combination of dynamic conflict

checks and double buffering. Communication aggregation is performed for special com-

munication patterns such as strided accesses, and the system is carefully tuned to reduce the

overhead for programs that do not benefit from overlap. This is achieved by a combination

of compiler support and runtime profitability analysis. Similarly, our system reduces the

overhead of prefetch initiation and metadata maintenance by using flow control heuristics

and by overlapping them with communication.

7.1.1 Optimizing Puts

The upward mobility of the initiation of upc memput operations is limited by control

dependencies, so we focus on delaying its completion. The completion of a put operation

can be postponed until either a synchronization event or a memory access that conflicts with

the put is encountered. Ideally such code-motion inhibiting statements should be identified

at compile time so that a sync call of the put could be placed right before them. However,

in practice static analysis alone results in overly conservative synchronization placements,

due to the imprecision of the alias analysis, especially for C-based languages.

Thus, automatic nonblocking transformation of upc memput is best done dynamically

in a demand-driven style by the runtime system, when the exact dependence information

becomes available. When upc memput is called, it is converted to a nonblocking call

and added to a runtime-managed list of outstanding puts (a tuple of 〈 handle, remote addr,

src addr, nbytes〉). Completion of an outstanding put operation is necessary at the following

program points:

91

1. Synchronization events: all outstanding put operations are completed.

2. Statements that read or write the remote destination: any outstanding put operation

whose target overlaps the remote memory region involved in the operation has to

be completed, in order to maintain local dependencies. At these entry points, our

runtime checks for conflicts and retires the operation involved, if any.

3. Statements that modify the local source: any outstanding put whose source is modi-

fied has to be completed. Since we do not rely on static program analysis, any local

write could potentially fall into this category, and checking for local dependence

would pose scalability problems. To address this, we eliminate local conflicts by us-

ing a nonblocking put call in our communication layer that allows the local source

memory to be modified once the initiation call returns. Depending on the transfer

size, this may result in the source memory being copied into a temporary buffer prior

to sending.

Figure 7.2 depicts the runtime data structure for nonblocking put management. The

outstanding puts are organized into an array of lists indexed by destination node, so that

conflict checks will only be performed against puts with the same destination. The lists

store and capture the FIFO order of the outstanding operations. To facilitate scalable com-

pletion at synchronization points of all outstanding operations, a separate array of pointers

to the lists containing active operations is maintained. Source buffering is performed inside

the communication layer and thus does not require special support.

Our approach requires minimal compiler support, as the compiler no longer needs to

guarantee code motion safety but only needs to estimate the profitability of the nonblocking

transformation. At each upc memput site, the translator performs a forward traversal; if

92

thread 0 T-1 (destination node)

List for conflict check

(handle, remote_addr, size)

List for barrier

of nodes written to

On remote put:
• check conflict
• issue nonblocking put (local
source buffered)
• add put to queue

On remote get:
• check conflict

On barrier/sync. call:
• Block for all outstanding puts

Algorithm sketch

Figure 7.2: Runtime structure for nonblocking puts.

it encounters a communication call, a loop, or a function call before reaching a barrier

or other synchronization events, it assumes that sufficient overlap exists and marks the

upc memput as a candidate for nonblocking optimization.

The dynamic conflict checking required by our approach constitutes a source of run-

time overhead that we try to minimize. Since operations are maintained in per-target lists,

the overhead of conflict checks grows linearly with the number of outstanding requests to

a specific node. However, our application experience indicates that very often programs is-

sue communication requests to memory regions whose address varies monotonically (e.g.,

93

traversing through a remote array in a loop). This observation is also validated on a num-

ber of numerical applications in [86]. Therefore, with each list of outstanding accesses we

dynamically maintain a bounding box of the remote memory region involved, by keeping

track of the minimum and maximum value in the list. If the target address falls outside the

bounding box, clearly no conflict exists; otherwise, the runtime reverts to the slower but

precise list scanning.

In programs that issue memory accesses monotonically, this technique reduces the con-

flict checking overhead to O(1) complexity. For programs that do not exhibit this property,

a more sophisticated data structure such as balanced search trees could be used to reduce

the asymptotic complexity of conflict checking1. In order to further reduce list traversal

costs, during a conflict check the runtime queries the network layer to test if the earliest

nonblocking put is complete, and removes it from the list accordingly. The runtime also

imposes a tunable limit on the maximal put list length; when the maximum is reached,

the runtime synchronizes on all the puts in the list before proceeding. Besides metadata

maintenance, the biggest source of runtime overhead is the buffering required inside the

networking system. Section 7.2.1 presents some performance results.

7.1.2 Optimizing Gets

The downward mobility of the completion for a upc memget operation is limited by any

use of the local destination buffer. Therefore we would instead like to move the message

initiation up, effectively prefetching the remote data. The challenge here is that the runtime

needs to have knowledge about future accesses; the translator could help determine the
1The stored intervals are guaranteed to be non-overlapping by virtue of the conflict-checking invariants,

allowing them to be unambiguously sorted based on start address.

94

earliest safe place to initiate a nonblocking get, but its effectiveness is severely restricted

by the inherent imprecision of static analysis.

Our solution is to exploit the structured nature of most parallel code. A large class

of SPMD programs exhibit spatial and temporal locality in their communication pattern.

While the data values being communicated are usually updated by local computation from

one program phase to the next, the communication structure (size, source, and destination

address of the upc memget operations) often remains unchanged. For example, in a stencil

algorithm like the Multigrid method, the communication ghost regions are allocated once

and reused in subsequent phases. Similarly, studies on the MPI NAS benchmarks suggest

a significant portion of the communication calls are dynamically analyzable, with constant

parameters at runtime [44]. Thus, we contend that for an important class of applications,

one can use past history to predict future access patterns by analyzing the communication

when a phase is first executed, and automatically prefetching the gets for the phase in its

subsequent executions.

Figure 7.3 describes the design for our nonblocking get optimization. We consider a

program phase to be the set of statements executed by a thread after any synchronization

event and before reaching the next synchronization event. Each static source level instance

of a synchronization event is assigned a unique identifier by the compiler. When a given

thread reaches a synchronization statement for the first time, we create a data structure to

store the prefetch candidates for the subsequent phase. Subsequent gets are recorded and

associated with the event. This operation is overlapped with the execution of the original

get and does not add any visible runtime overhead.

On the first execution of a phase no speculative actions are performed. For subsequent

95

executions of a phase, prefetch calls are issued by each thread immediately upon entrance

(right after a barrier), to maximize the amount of available overlap. To avoid local depen-

dency violations or spurious updates to user data on a mispredict, the prefetched data are

stored into runtime-allocated temporary buffers. When a upc memget call is encountered,

if it matches one of the prefetches, the runtime synchronizes the outstanding transfer and

copies the desired data from the prefetch buffer into its destination. Otherwise, the runtime

adds this previously unseen get to the prefetch list and issues the get as usual.

At the end of a phase, the runtime synchronizes and deletes any unused prefetches, to

avoid performing useless communication in the future2. Any put operation within a phase

requires conflict checks against the outstanding gets, to ensure that the application does

not read stale values that violate data dependencies. No conflict checking is required when

issuing the prefetches.

The runtime structures for nonblocking gets consist of two hash tables. One maps the

current phase to a list of nodes that the thread has been prefetching from, while the other

maps 〈phase id, node id〉 to a list of prefetches. Similar to the case for puts, the compiler

algorithm complexity is greatly reduced, since prefetching temporary buffers and runtime

conflict checking eliminate the need for static dependence analysis. The get optimization

notably assumes that remote addresses appearing in a upc memget operation remain valid

for the lifetime of the program, such that subsequent speculative get operations can be

safely issued without danger of causing a runtime fault (for example, if the relevant remote

object has been freed). In Berkeley UPC this is already guaranteed because the shared

memory allocator never unmaps memory pages.

2 Mispredicted gets must be retired before their target buffers can be safely reused for subsequent
prefetches, to prevent a race between two outstanding gets to the same buffer.

96

On remote get:
• if get is prefetched, copy
data from local tmp buffer
• else, add get to prefetch
list of the current phase

On remote put:
• check for conflict

Before a barrier:
• sync and remove unused
prefetches

After a barrier:
• issue prefetches for the
current phase

Algorithm sketch

<phase id> node list

List of nodes we’re prefetching from

<phase id, node> prefetch list

(handle, remote_addr,
local_tmp_addr, size)

Current
phase

id

Figure 7.3: Runtime structure for get prefetching.

To avoid prefetching a get whose copy overhead outweighs its available overlap, each

get’s profitability is estimated before its addition to the prefetch list. Profitability is de-

termined dynamically by comparing the amount of overlap (time of upc memget - time

of phase start) to the memory copy overhead. The estimation overhead can be completely

overlapped by the cost of the remote get.

97

7.1.3 Automatic Communication Aggregation

Thus far in our framework, the gets and puts are issued individually to hide their communi-

cation latencies through overlapping. Many SPMD programs, however, have an alternating-

phase structure with remote accesses grouped into a phase separate from local computation.

The accesses in a communication phase are generally non-contiguous - however, combin-

ing puts and gets between the same pair of nodes into larger transfers is often profitable, as

it amortizes the high per-message overheads of cluster network hardware over larger data

payloads, thereby achieving a higher effective transfer bandwidth. Manual packing and

unpacking of the non-contiguous accesses can be tedious and error-prone, however, and

departs from the one-sided communication model since they require the cooperation of the

remote thread. An optimization that automatically detects and aggregates the communica-

tion bursts would therefore be very useful.

We augment the framework to perform communication aggregation by targeting the

VIS functions described in Section 2.2. When the translator detects at compile time a

potential burst of gets or puts (e.g., a upc memget inside a loop in Figure 7.1, taken from

the NAS BT benchmark), it inserts special begin aggregate and end aggregate runtime

calls to mark the aggregation region. When the runtime encounters a remote access inside

the region, instead of issuing the access immediately (for puts) or adding it to the prefetch

list (for gets), the runtime stores it into an aggregation queue, which is again organized

based on the remote node. Upon exiting the aggregation region, the runtime issues the

communication using a single VIS call per remote node, letting the network decide the best

way to combine and schedule the accesses. Special patterns such as strided accesses and

accesses with identical size are recognized and supported using the more efficient VIS calls

98

with reduced metadata overhead. Conflict checks proceed as usual inside an aggregation

region, and a conflict terminates the aggregation region prematurely by switching to the

default behavior described earlier.

In the current design, no buffering is done for the accesses in an aggregation region, and

the translator must guarantee that local memory used by the gets and puts is not modified

by other code in the aggregation region. As most communication phases (the candidates for

our aggregation regions) are short and contain no computation code, so far our translator

has been successful in proving that the upc memget and upc memput operations inside

aggregation regions can safely be reordered without violating data dependences. We are

planning to add a runtime check function that the translator can issue when it cannot verify

if a local access may be in conflict with the upc memget or upc memput calls.

7.2 Performance Analysis

The last section presented the basic design for our automatic nonblocking communication

framework. In this section, we provide a performance analysis for our framework. Our

optimizations are primarily designed for clusters where remote communication latency is

high relative to the processor speed. Since the system’s overhead largely depends on the

network and architecture parameters, we choose the Opteron/VAPI cluster in Table 3.1 for

an in-depth investigation. Our findings, however, are applicable to any cluster systems

where communication overlap is available (i.e., message overhead is smaller than the net-

work latency).

99

7.2.1 Buffering Overhead

The put initiation cost depends on the message startup overhead of the network, as well

as the overhead imposed by the communication layer’s buffering of the local source. Fig-

ure 7.4 compares the cost of issuing a nonblocking put without and with source buffering;

the semantic difference between the two is that the former poses the additional requirement

that the local source memory cannot be safely modified until the nonblocking put com-

pletes. The latency of a blocking put is also included for comparison. For very small puts

(up to 72 bytes on this GASNet network), the transfer is automatically performed using PIO

and thus incurs no buffering overhead. Larger puts incur a cost for copying the source to a

bounce-buffer, and beyond about 1KB this memory copy begins to affect the nonblocking

put initiation time, and grows roughly linearly with the transfer size. Even with buffering,

however, the cost of issuing a nonblocking put is still significantly less than the latency of

a blocking put. Since the buffering is done at the discretion of the communication layer, a

nonblocking buffered put should never perform worse than a blocking put.

Two main sources of overhead exist in the case of get operations. If the get has been

prefetched, there may be a cost for the synchronization of the matching prefetch, which

should never be higher than that of the original blocking get. Additionally, since the

prefetch stores the remote data into a temporary buffer, the runtime needs to pay a copy

overhead. Figure 7.5 measures the copy overhead by comparing the execution time of a lo-

cal memcpy to that of a blocking get. While the copy overhead is negligible for small gets,

it could equal about 30% of the communication latency for large transfers; this motivates

our profitability analysis described in Section 7.1.2.

An additional potential performance penalty for buffering is that it may increase mem-

100

Put initiation overhead

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000 10000 100000
put size (bytes)

tim
e

(u
s)

nonblocking, no buffer

nonblocking, buffer

blocking

Figure 7.4: Put initiation overhead.

ory pressure by evicting live data from the caches. We have not observed this effect in our

experiments, however. Without our optimization, the data fetched by a get sit in memory

after an RDMA, and the application would need to pull it into cache on demand on first

use. Since it is likely that the application will immediately use the data after a get, our

copy operation has the effect of streaming the data from the prefetch buffer into cache.

Finally, the penalties imposed by get prefetch “misses” in an RDMA system are almost

entirely constrained to NIC resources and memory bus bandwidth. Mistakenly prefetched

data should never occupy space in cache.

101

Percentage of memcpy overhead

0%
5%

10%
15%
20%
25%
30%
35%

10 100 1000 10000 100000 1000000
get size (bytes)

Figure 7.5: Memory copy overhead for prefetched gets, measured as Tmemcpy/Tmemget.

7.2.2 Communication-Related Overhead of Speculative Prefetch

The costs of prefetch synchronization before a barrier is affected by the number of mis-

predicted prefetches in the phase, as the useful ones would have been synchronized earlier

when their matching upc memget call was encountered. To improve prefetching accuracy,

the runtime removes from the list prefetches that are never used in the phase. Furthermore,

the prefetch clearing time can be overlapped with the barrier latency by using split-phase

barriers. In a split-phase barrier, a thread first notifies other threads that it has reached the

barrier, then waits until all threads have executed the notification call. By inserting prefetch

102

synchronization code between the notify and the wait call, we can effectively overlap its

overhead with the barrier latency. Micro-benchmark results on our target platform suggest

that even in the absence of load imbalance, a barrier still takes 55us for 16 nodes and up to

87us for 64 nodes, well above the round trip latency for small- and medium-sized gets. We

therefore expect the overhead of list clearing to be completely hidden by barrier latency for

most applications3.

Overhead of get pipelining

0.1

1

10

100

1 10 100 1000
number of nonblocking gets

tim
e

(u
s)

8
256
4096
32768

Figure 7.6: Prefetch initiation overhead, for each individual get.

The prefetch initiation overhead is primarily determined by the network’s ability to

3This optimization does not apply to nonblocking puts, because UPC’s memory model requires a thread
to globally complete its put operations before issuing the notify operation. The reordering is legal on the
prefetches, however, because the fetched data is never used.

103

issue consecutive nonblocking gets, specifically the message gap parameter in the LogP

model [11]. Since the initiation occurs after a barrier and before user code executes, it

falls in the critical path and we cannot easily hide this synchronous overhead. Figure 7.6

measures the initiation overhead of a sequence of nonblocking gets on our target platform.

Four different message sizes are measured: 8 bytes, 256 bytes, 4KB, and 32KB. While the

per-get overhead of initiating 64 nonblocking gets is the same as that of one get, at 128 gets

performance begins to suffer dramatically for all message sizes, due to the (tunable) net-

work queue depth being exceeded. Once the network queue depth is exceeded, subsequent

initiation operations stall until the head of the queue is retired, and the stall time is primar-

ily determined by the message size and the network bandwidth. Hence once you exceed

the injection queue length, the injection time grows roughly linearly with the payload size.

We implement a simple flow-control mechanism to prevent a flood of messages during

prefetch initiation. Instead of issuing all prefetches immediately after the barrier, the run-

time issues them in 64-element chunks. When a upc memget is encountered, our system

checks (without blocking) if the previously issued prefetches to the same destination node

have finished; their completion indicates that the network is likely not busy, and the system

issues the next chunk of prefetches. Since the array of prefetches for each node is kept in

FIFO order, our system will also first prefetch for upc memget operations that occur earlier

in program execution. This technique thus would work well for iterative code with locality

in communication schedule, and these applications are exactly the kind we are targeting for

the get prefetching optimizations.

104

40% 30% 20% 10% non-contiguous, non-contiguoucontiguous (for reference)
52.452 53.852 52.754 52.655 256 53.131 53.852 53.35241
68.386 67.45 68.369 67.85 512 53.707 67.45 110.9478

145.167 143.234 139.849 144.297 1024 51.396 143.234 228.9713
253.563 206.899 259.037 213.416 2048 54.517 206.899 390.001
269.756 267.302 279.4 265.412 4096 54.531 267.302 566.6159
379.677 396.978 362.728 374.225 8192 55.084 396.978 689.4193
500.817 500.864 496.374 498.792 16384 55.048 500.864 748.0372
600.486 593.127 595.96 595.665 32768 54.785 593.127 771.2622
572.865 572.289 573.181 581.835 65536 54.464 572.289 783.4927

40% 30% 20% 10%
53.487 53.131 53.274 53.24
53.313 53.707 53.273 53.24
52.857 51.396 53.197 53.31
52.738 54.517 53.475 53.046
52.715 54.531 53.368 53.161
52.829 55.084 53.17 53.325
53.351 55.048 53.331 53.479
53.162 54.785 53.448 53.41
53.028 54.464 53.415 53.419

3.309215 MB/sec (get_nbi_buthroughput)
6.569985 MB/sec (get_nbi_buthroughput)
13.24835 MB/sec (get_nbi_buthroughput)
26.29692 MB/sec (get_nbi_buthroughput)
53.35241 MB/sec (get_nbi_buthroughput)
110.9478 MB/sec (get_nbi_buthroughput)
228.9713 MB/sec (get_nbi_buthroughput)
390.001 MB/sec (get_nbi_buthroughput)

566.6159 MB/sec (get_nbi_buthroughput)
689.4193 MB/sec (get_nbi_buthroughput)
748.0372 MB/sec (get_nbi_buthroughput)
771.2622 MB/sec (get_nbi_buthroughput)
783.4927 MB/sec (get_nbi_buthroughput)
790.1391 MB/sec (get_nbi_buthroughput)
793.273 MB/sec (get_nbi_buthroughput)

793.5198 MB/sec (get_nbi_buthroughput)
716.8341 MB/sec (get_nbi_buthroughput)
753.0106 MB/sec (get_nbi_buthroughput)

Strided Get Performance Comparison

0

100

200

300

400

500

600

700

800

900

100 1000 10000 100000
Total Payload (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

contiguous (for reference)
non-contiguous, with VIS aggregation
non-contiguous, no VIS aggregation

Figure 7.7: Strided get performance micro-benchmark.

7.2.3 Effectiveness of Communication Aggregation

Figure 7.7 compares the effective bandwidth of performing a logically non-contiguous get

operation using a single aggregated VIS call versus a flood of individual (non-aggregated)

get operations that achieve the same data movement. The micro-benchmark specifically

measures the bandwidth for a 1-D strided get operation with 256-byte elements and a stride

of 850 bytes at both the source and destination, while varying the number of elements to

vary the total transfer size – this setup was chosen because it closely matches the most

common access pattern for the BT benchmark. The figure demonstrates that performing

the non-contiguous get using message aggregation provides a huge bandwidth advantage

over the non-aggregated approach; the latter achieves consistently poor bandwidth due to

105

the high message count and relatively heavy per-message overheads. The non-aggregation

curve is flat because in the experiment all NIC-level messages are 256 bytes independent

of the total payload for the higher-level strided operation (shown on the x-axis). Thus, we

observe a constant bandwidth equal to the flood bandwidth for 256-byte messages.

For comparison purposes, the figure also includes the raw bandwidth for fully con-

tiguous transfers of the given total payload size (where no aggregation is necessary), to

represent the theoretical maximal bandwidth for a get of the given payload size. The non-

contiguous, aggregated transfer pays CPU and memory system overheads for gathering and

scattering the payload from the non-contiguous source and destination locations to contigu-

ous transfer buffers at the network layer, which explains the degradation relative to the raw

contiguous transfer performance.

7.3 Experimental Results

We use the nine bulk communication benchmarks in Table 3.2 in our evaluation. Figure 7.8

presents the optimization speedup of our optimization framework. Three configurations are

compared: a blocking version that uses fully blocking communication, a manual version

where the communication calls are manually converted to nonblocking in a way that maxi-

mizes overlap, and finally an auto version with our optimizations. Due to the size of the cfd

application, we have not manually converted the communication calls to be nonblocking;

this underscores the importance of optimizations that could automatically generate non-

blocking communication. Class B input size is used for the NAS benchmarks, while the

gups-bulk benchmark executes eight million updates.

106

Effectiveness of overlap -- 16 threads

0.8

1

1.2

1.4

1.6

1.8

2

BT CG FT

FT
-pe
nc
ils IS MG SP gu

ps cfd AV
G

sp
ee

du
p

ov
er

 b
lo

ck
in

g

manual
auto

Figure 7.8: Optimization speedup for 16 threads.

Sixteen threads are used in the experiments, with one thread per node. The blocking

version is used as the baseline for calculating the performance speedup. As expected, non-

blocking communication is an effective method for hiding communication latencies, with

the manual version speeding up the benchmarks by 30% on average; for some benchmarks

(e.g., FT and SP) the communication latency is almost entirely eliminated. Our automatic

optimization framework is somewhat less effective and achieves a 26% speedup, and is

faster than the blocking version for all benchmarks.

The largest performance discrepancy between the manual and the auto version occurs

107

Effectiveness of overlap -- 64 threads

0.8

1

1.2

1.4

1.6

1.8

2

BT CG FT

FT
-pe
nc
ils IS MG SP gu

ps cfd AV
G

sp
ee

du
p

ov
er

 b
lo

ck
in

g

manual
auto

Figure 7.9: Optimization speedup for 64 threads.

on the FT benchmark, whose large transfer size induces a high local buffering overhead

that negates most of the advantages from overlapping. Disabling network buffering for

puts (this happens to be correct for this benchmark) brings the auto version’s performance

to within 3% of that of manual blocking, but has no effects on the other benchmarks.

Thus, while our framework is effective for small to medium transfer sizes, a zero-copy

consistency checking algorithm could further benefit applications with large-sized puts.

To test the scalability of our framework, we run the benchmarks with the same input

size using 64 threads in Figure 7.9. Manual tuning improves performance by 34%, while

108

our system achieves a 29% speedup overall. Nonblocking communication is effective on

all benchmarks with the exception of IS, which fails to benefit from either automatic or

manual optimizations. The communication part of the IS benchmark is implemented as a

collective all-to-all exchange, with the total number of messages in the program increasing

quadratically as more threads are added. In the absence of independent computation to be

overlapped, the resulting network contention reduces the effectiveness of pipelined com-

munication. Compared to 16-processor runs, our automatic optimization becomes much

more effective on the FT benchmark due to a reduction in message size; because the input

size is fixed, quadrupling the thread count decreases transfer size by the same ratio, and

therefore results in a much smaller buffering overhead.

7.4 Breakdown of Benchmark Performance

blocking time issue time check time sync time
BT 16.7 5.07 0 0.02
FT 182 151 1.42 0

FT-pencils 11.4 1.67 0.56 0
MG 34.5 2.88 0.07 0.36
SP 11 3.94 1.98 0.21

Gups-bulk 16.9 0.78 0 0.51

Table 7.1: Breakdown of nonblocking put time (16 threads). All values are in microsec-
onds.

To further understand the performance characteristics of our system, we add timers to

measure the time spent in the individual runtime functions. Table 7.1 presents a breakdown

of the average execution time for each individual bulk puts in our framework. Sixteen

threads were executed, and the reported data are from thread zero. Aggregation is disabled

109

in the experiments so that we can consider the execution time of each put individually. The

blocking time column refers to the average cost of a blocking put in the base version. Each

nonblocking put’s execution time, in turn, can be divided into three main components: the

time to issue the nonblocking put, the time to perform the conflict checks, and finally the

time spent on waiting for the put’s completion. Since buffering for puts is performed inside

the network layer, the buffering overhead is included as part of issue time; this explains the

high issue time of the FT benchmark. For several of the benchmarks the conflict check time

is negligible, suggesting that our bounding box approach is effective at reducing conflict

check overhead. Finally, the execution time for the blocking puts is significantly higher

than that of the nonblocking puts for most benchmarks, indicating that our framework

successfully hides most of the communication latencies.

blocking time issue time check time sync time copy time
BT 15.2 1.3 0 5.7 0.2
CG 120.7 2.4 0.03 62 26.7
IS 1562 45.2 0 622 148

Table 7.2: Breakdown of nonblocking get time (16 threads). All values are in microsec-
onds.

Table 7.2 provides a similar breakdown for the get prefetches. The blocking time col-

umn again refers to the average cost of a blocking get in the base version. The execution

time for each prefetch can be broken down into four components: the prefetch issue time,

the conflict check time, the time to synchronize the prefetch when we have a hit, and finally

the time spent on copying the data from the prefetch buffer to user memory. We do not re-

port the time to synchronize and remove useless prefetches, since it should be completely

overlapped by the barrier overhead in most cases. Compared to puts, the gets are less likely

to be completely overlapped, though some of the communication latencies can still be hid-

110

den through pipelining. Specifically, the high synchronization and copy time for IS can

be attributed to both its large message size as well as its all-to-all communication pattern.

Since the gets in our benchmarks are mostly confined in short pure communication phases,

aggregating them is likely to be more effective than pipelining. Finally, conflict check time

as expected is low on these get-based benchmarks, due to the scarcity of puts.

Effects of Aggregation

0.94
0.96
0.98
1

1.02
1.04
1.06
1.08
1.1
1.12
1.14
1.16

BT CG IS MG SP AVG

sp
ee

du
p

ov
er

 p
ip

el
in

in
g

Figure 7.10: Performance comparison with and without aggregation.

Figure 7.10 presents the performance difference in our framework with and without au-

tomatic aggregation. Our compiler identifies aggregation regions in five of the benchmarks

listed in the graph, and nearly all of the bulk communication calls in these benchmarks

were converted into runtime VIS calls. The aggregation regions in the benchmarks con-

111

sist of strided accesses to multi-dimensional arrays on a remote node, with the exception

of IS, whose aggregation region is a loop that performs all-to-all exchange. Ironically, IS

benefits the most from the use of VIS calls, even though the communication calls in the

region all have different destinations. This is because the compiler guarantees the absence

of local conflicts inside the aggregation region, thereby eliminating the need for runtime

buffering; as we have observed, this copy time can be expensive due to the large message

size. BT also benefits substantially from aggregation because of its large number of strided

small gets. The two put-based benchmarks (MG and SP) experience a somewhat smaller

speedup, though the aggregation versions slightly outperform the manual pipelining ones.

CG benefits the least from aggregation, as the size of each individual strided get is large

enough that aggregation does not provide a significant bandwidth advantage over pipelin-

ing.

112

Chapter 8

Related Work

8.1 Parallel Programming Models

As the amount of prior work on parallel programming models is too extensive to be com-

pletely covered here, we will concentrate on other Partitioned Global Address Space lan-

guages as well as the current language efforts on the High Productivity Computing System

(HPCS) program.

Titanium: Titanium [51] is an explicitly parallel dialect of Java designed for high-

performance computing developed at UC Berkeley. Like UPC, it is a PGAS language

that follows the SPMD execution model. To assist in the creation of large distributed data

structures, Titanium provides a powerful multi-dimensional array abstraction that greatly

simplifies the construction of grid-based scientific computations. Communication is gen-

erally expressed as copy operations over multi-dimensional arrays. To support a global

address space memory model, Titanium augments Java’s type system with type qualifiers

113

to express the locality and sharing properties of distributed data structure [71, 72]. Other

notable Titanium features include an unordered loop construct for iterating through multi-

dimensional arrays, user-defined immutable classes that facilitate pass-by-value seman-

tics, and C++ like operator overloading support. A recent study suggests that Titanium

implementations for three of the NAS parallel benchmarks can match the performance

of the standard MPI/Fortran implementations, while requiring substantially fewer lines of

code [40].

Compared to UPC, expressions and data structures in Titanium carry more high-level

semantic information, which may allow for more aggressive compiler analysis and opti-

mizations. On the other hand, more burden is placed on the compiler since more levels of

abstraction exist between the language and the target code. Given the similarities between

the compilation framework of the Berkeley UPC and the Titanium project (both perform

source-to-source translation with C and GASNet as the target), a lot of the optimizations

described in this dissertation could be applied to Titanium as well. For example, the opti-

mization framework described in Chapter 7 could be integrated into the Titanium runtime

to make the array copy operations automatically nonblocking. The fine-grained scalar ac-

cesses in Titanium could also benefit from our optimization framework in Chapter 6.

Co-Array Fortran: Co-Array Fortran (CAF) is an SPMD parallel extension of the

Fortran 90 language [83]. A commercial compiler is available on the Cray X1, and a

portable open-source implementation has also been released from the Rice University [31].

The Rice-CAF compiler achieves portability by using a strategy resembling that of the

Berkeley UPC compiler: CAF code is translated into Fortran 90 with calls to either GASNet

or ARMCI [82], another one-sided communication library. Several studies [32, 33] have

114

compared CAF and Fortran/MPI versions of the NAS parallel benchmarks, concluding that

the CAF compiler can deliver roughly equivalent performance to that of MPI.

As part of these performance studies several communication optimizations were manu-

ally applied to CAF programs, chief among them synchronization strength reduction [102],

which replaces collective barriers with uni-directional point-to-point synchronization prim-

itives to increase the amount of concurrency. They also proposed adding mechanisms for

programmers to declare nonblocking communication regions and to manually pack strided

accesses. Our optimization framework in Chapter 7 performs similar transformations au-

tomatically, and thus has the advantage of increasing programmer productivity.

HPCS Languages: As part of DARPA’s program on creating the next generation’s

High Productivity Computer System, three experimental languages are currently actively

under development: the Chapel language from Cray [19], the Fortress language from

Sun [3], and the X10 language from IBM [22]. Specifications for these languages have been

published, but implementations for distributed memory architectures are not yet available

as of this writing. The Chapel language employs a multithreaded parallel programming

model that includes support for task, data, and nested parallelism. The language supports

locality optimization on data and computation through data distribution abstractions called

locales and data-driven placement of subcomputation. The Fortress language adopts a

shared global address space as it data model, and also relies on multithreading as its control

model. Parallelism is to be automatically inferred by the compiler, and synchronizations for

shared variable accesses are planned to be satisfied by a transaction memory system. The

X10 is a parallel distributed object-oriented language, and is also a member of the PGAS

family. Targeted for clusters of multi-core SMP chips with non-uniform memory hierar-

115

chies, X10 allows users to explicitly specify an object’s locality in terms of places. Task

parallelism can be achieved with special language constructs such as ateach and foreach,

while data parallelism is supported through global arrays and data structures.

The HPCS languages are similar to the PGAS languages in that they all provide the

shared address space abstraction and permit programmer to have explicit control of data lo-

cality. They are different from SPMD languages like UPC, however, in that their execution

models support dynamic parallelism. Unlike SPMD programming, where a fixed number

of thread is created at startup with all of them executing the same code, the HPCS languages

abstract away processor information from the program, and parallelism is introduced by the

user through special language constructs. For example, Chapel supports forall loops and

cobegin statements to create parallelism among loop iterations and statements, and X10

introduces the notion of asynchronous activities to help the user create thread-based par-

allelism. The HPCS languages thus have a productivity advantages over PGAS languages

in that they provide more support for common parallel programming styles such as data

and task level parallelism. On the other hand, more compilation and optimization efforts

are required for these languages to achieve good performance. Optimizations for one-sided

communication, however, are beneficial to any languages with a shared address space, and

lessons learned from this dissertation may well be applicable to these new languages.

8.2 Optimizations for Parallel Programs

For today’s distributed memory machines, the overhead of accessing remote data is usu-

ally orders of magnitude higher than local memory accesses. This drastic performance gap

116

has motivated numerous research works that develop compiler algorithms to reduce com-

munication overhead [5, 6, 21, 39, 62, 63, 114]. Traditionally the optimization problems

have been studied along with communication code generation in parallelizing and data-

parallel compilers. For example, the Stanford SUIF compiler automatically parallelizes

and optimizes sequential programs on shared memory multiprocessors [5, 6, 49, 50, 73].

The Polaris system [9, 15] and the PARADIGM compiler [8, 47, 97] are other prominent

compiler projects that automatically parallelize Fortran 77 programs. Similarly, a number

of optimizations including communication vectorization and pipelining have been imple-

mented for High Performance Fortran [4, 48, 99].

These parallelizing compilers share some common characteristics as the framework de-

scribed in this dissertation. For cluster environments, both need to reduce the message

count and volume through redundancy elimination and communication aggregation, and

both hide network latencies through communication and computation overlap. Some of the

optimization techniques for data parallel programs are also applicable to PGAS languages,

but the fundamental differences between the programming models distinguish our work

from previous efforts. The parallelizing compilers accept programs with serial semantics

and thus have more freedom in program transformation, but have an added burden of de-

tecting parallelism and managing data decomposition. Due to the complexity involved,

today automatic parallelization is generally considered infeasible for large applications.

Data-parallel languages avoid some difficulties of automatic parallelization with user di-

rectives, but sophisticated analyses are still required to map the fine-grained parallelism to

the coarser-grained architecture. In contrast, PGAS languages are explicitly parallel and

give programmer control of data layout, so that users can implement high-performance

parallel programs without sophisticated compiler support. The role of compiler optimiza-

117

tions in PGAS languages, then, is to improve productivity by allowing programmers to

write simple code with fewer manual optimizations. The PGAS model simplifies the anal-

ysis problem, but also presents new challenges since the optimization framework needs to

approach the performance of well-tuned user code.

Another difference is that while the earlier parallel compilers tend to focus on array op-

timizations, our optimization framework supports both fine-grained read and writes as well

as remote memory copies. Previous efforts typically focus on minimizing the number and

volume of communication; the one-side communication model used by PGAS languages

separates data transfer from its synchronization, and this exposes more opportunities for

overlap. Thus, our framework successfully combines both communication aggregation and

communication overlap to achieve better performance. Finally, by seamlessly integrating

runtime support, we are able to bypass the limitations of static analysis and also obtain

more accurate network performance models.

MPI is currently the de facto standard for cluster programming, and there has been a

large amount of work on tuning the collective implementations [45, 46, 95, 103]. While

these library-based optimizations can produce efficient collective subroutines, they analyze

only one communication call at a time and are therefore unable to overlap communication

with independent computation. Yuan et al. [63] proposed a combined compiler and library

approach to optimize MPI programs, but their techniques are again limited to individual

MPI collective routines.

118

8.2.1 Optimizing for Fine-grained Regular Accesses

A significant amount of work has been done on communication optimizations for array-

based regular accesses, most of them in the context of data-parallel compilers. Initial work

focuses on array optimizations for individual loops, while later efforts apply global program

analysis across loop nests. Chakrabarti et al. [21] have implemented a global communica-

tion scheduling algorithm for High Performance Fortran that handles remote accesses in

an interdependent manner. They have also explored using late placement to expose more

opportunities for combining messages. Kandemir et al. [61] use a combination of dataflow

analysis and linear algebra framework to perform optimizations such as message vectoriza-

tion and message coalescing. More recently, an algorithm for coalescing communication

in regular data-parallel applications has been presented in [24].

Wakatani and Wolfe [105, 106] introduce message strip-mining and analyze its impact

for array redistribution in HPF and a code that implements a simple inspector-executor. The

idea of decomposing message traffic also appears in [90, 91]. In order to alleviate switch

contention, Prylli et al. implement transparent message decomposition inside the BIP net-

working layer. They model the steps involved in message transmission and derive formulas

for predicting the optimal decomposition, and overall message passing performance.

Liu and Abdelrahman [74] propose a compiler transformation that peels off iterations

accessing remote data in a parallel loop and schedules them at the end. This transformation

is effective for data parallel programs but less so for PGAS languages, since in general

every iteration may perform communication. Danalis et al. [39] describe a program trans-

formation that overlaps MPI collective routines with computation loops, by restructuring

the computation code into blocks and interleaving them with asynchronous communica-

119

tion. The transformation is similar to message strip-mining, but programmers are left with

the burden of picking the tile size and number of transfers.

8.2.2 Optimizing for Fine-grained Irregular Accesses

In the context of communication optimizations that overlap communication and computa-

tion, perhaps the prior research that is most closely related to our techniques in Chapter 6 is

Hendren and Zhu’s work on parallel C programs [114]. Their analysis framework is based

on the concept of possible-placement analysis, which identifies the earliest possible point

to issue a remote read, and delays the issuing of a remote write to exploit opportunities for

blocked communication. They have also developed a static locality analysis based on type

inference algorithms for fast points-to analysis [113].

The optimizations presented in this dissertation operate under UPC’s relaxed memory

model, so that only local data dependency needs to be preserved when reordering shared ac-

cesses. More sophisticated parallel analyses become necessary, however, if a strict memory

model such as sequential consistency is used. Krishnamurthy and Yelick [67] present com-

piler analysis and optimizations for explicitly parallel Split-C [37] programs with a global

address space. Most of their work focuses on improving the accuracy and efficiency of the

cycle detection [94] algorithm for SPMD programs, which enforces sequential consistency

under reordering transformation. Our optimization framework can be augmented with their

cycle detection algorithm to allow for more opportunities at communication optimization

in the presence of strict accesses.

More recently, Kamil et al. [59, 60] developed compiler analysis techniques to reduce

the number of memory fences required for enforcing sequential consistency, and used the

120

analysis to automatically convert blocking array copies in Titanium into nonblocking op-

erations. Their optimization significantly improves the performance of two matrix vector

multiply benchmarks. Su and Yelick [98] have developed an array prefetching algorithm

for irregular array accesses in Titanium using inspector-executor techniques. Their opti-

mization supports loops with indirect accesses (A[B[i]]) and uses a performance model to

pick the most efficient data access method.

Lee et al. [69, 70] also describe an approach for compiling explicitly parallel program-

ming languages. They present a concurrent static single assignment (CSSA) form that can

represent parallel programs with cobegin/coend and post/wait synchronization.

They propose several optimizations based on the CSSA form, including global value num-

bering, common subexpression elimination, and redundant load/store elimination. Their

optimizations maintain correctness by enforcing sequential consistency, while our method

takes advantage of UPC’s relaxed memory model to preserve sequential consistency only

for strict accesses. Their work addresses a more general parallelism model than ours but a

more restricted class of shared memory architectures where explicit nonblocking commu-

nication optimizations are not relevant.

Barton et al. [10] describe the design and implementation of a UPC compiler for the

BlueGene/L supercomputer, and report good performance scalability up to hundreds of

thousands of processors. For the Gups benchmark, their compiler applies a remote update

optimization, where the compiler recognizes a read-modify-write operation on some shared

address and automatically transforms it into an active message based update on the remote

processor. They also describe an affinity removal optimization for upc forall loops, though

their technique is limited to the case where the affinity expression is the loop induction

121

variable.

8.2.3 Optimizing Bulk Communication

Iancu et al. [55] utilized virtual memory support to overcome the limitation of compiler

analysis for bulk memory transfers. When a nonblocking communication is issued, the lo-

cal memory pages involved in the communication are marked as having no access through

the mprotect system call, so that synchronization will happen on-demand when the com-

putation statement access those pages and receive a memory protection error. The scheme

maximizes the amount of overlap, but is not portable; the POSIX standard [88] requires

that the protected memory be obtained from the mmap call, but the local memory involved

in nonblocking communication generally either lives on stack or comes from malloc, which

may not use mmap to obtain new memory.

Intelligent runtime systems have received renewed interest in recent years and show

very promising potential in terms of performance, scalability and programmer productivity.

The approach most closely related to ours is the Charm++ [23] runtime. Charm++ provides

for latency hiding through an abstract execution model based on processor virtualization

and message-driven execution. Charm++ decomposes the computation and achieves over-

lap by rescheduling threads that block for communication. In a sense, our approaches

are converses – Charm++ schedules computations while our optimizations aggregate and

schedule communication. Sorensen and Baden [96] present a data-driven programming

model and run time library that manages communication pipelining and scheduling through

task graph, actor-like execution.

Software caching of remote memory has been studied extensively in the context of dis-

122

tributed shared memory (DSM) systems [20, 58, 64, 93], and is available in a number of

UPC compilers [34, 92]. While remote reference caching can be very effective for shared

memory style code which is oblivious to data locality [112], it may not help programs

for which the user has manually replaced fine-grained accesses with bulk communication.

Most well-tuned PGAS applications use bulk communication to amortize the high remote

access latencies on clusters, and our optimizations are specifically designed to further im-

prove the performance for these kind of programs.

Numerous hardware and software prefetching schemes have been proposed to hide the

main-memory access latencies [28, 76, 78, 104]. The primary difference between unipro-

cessor prefetching versus prefetching in a distributed environment is that the latter lacks

a hardware cache that can store prefetched data, and thus has to pay an extra copy over-

head to deliver the data to the client. Prefetching accuracy is also more important, since

a mispredicted prefetch wastes not only bandwidth but also message startup and cleanup

overhead.

123

Chapter 9

Conclusions

Effective use of communication networks is critical to the scalability of parallel appli-

cations. Partitioned Global Address Space languages have proven effective at utilizing

modern networks because their one-sided communication is a good match to underlying

network hardware. In this dissertation, we have described an optimization framework that

improves the performance of UPC programs on cluster architectures. The communication

optimizations serve dual purposes: aggregating individual reads and writes to reduce mes-

sage count, and making blocking remote accesses split-phase to achieve communication

and computation overlap. The framework covers three major access patterns in PGAS lan-

guages: fine-grained array accesses in loop nests, fine-grained irregular pointer accesses,

and bulk memory transfers. A combination of compiler and runtime support is used to in-

crease the optimizations’ effectiveness. The framework is transparent to the programmers

and thus frees them from the details of communication management.

To summarize the major results of this dissertation:

124

• We have demonstrated that the source-to-source translation adopted by our compi-

lation framework incurs only a small overhead, and introduced several techniques

to lower the cost of shared pointer arithmetic and shared local accesses in UPC. We

have also shown a strategy for compiling UPC’s parallel loop constructs.

• We have implemented an optimization framework that effectively reduces the over-

head of fine-grained array accesses by hoisting them out of loop nests. Our frame-

work extends the traditional communication vectorization with strip mining, so that

the transformed loop could also benefit from communication and computation over-

lap. We have also developed a simple heuristic that can help the optimizer or the

programmer select a good strip size for message decomposition.

• We have developed a static optimization framework for fine-grained irregular ac-

cesses in UPC programs. The framework consists of three optimizations: a PRE

optimization that eliminates redundant shared pointer arithmetic and shared memory

accesses, a split-phase optimization that exploits communication and computation

overlap, and a coalescing optimization that reduces the message startup overhead.

• We have presented a runtime framework for optimizing bulk synchronous programs

by transparently converting the blocking remote bulk transfers into nonblocking ones

in a way that maximizes the overlap of communication with computation, while still

maintaining the memory consistency guarantees of the language. The system also

recognizes special access patterns and automatically aggregates communication to

further improve performance.

Although sophisticated compilation technology is not a prerequisite for the success of

PGAS languages, it is still important to have communication optimizations that can achieve

125

better performance out of programs that are written without significant hand-optimizations.

To exploit communication and computation overlap, today parallel programmers typically

have to manually apply nonblocking communication primitives provided by the language,

and explicitly insert synchronization calls for the nonblocking accesses. To reduce message

startup overhead, programmers similarly have to manually pack and unpack the remote

transfers. This manual scheduling and aggregation of remote accesses creates additional

obstacles on the already difficult task of parallel programming. Manual optimizations are

cumbersome to code, and programmers may have difficulty applying more sophisticated

optimization techniques. Thus, our framework can significantly improve programmer pro-

ductivity by freeing them from the details of communication management, while still of-

fering performance comparable to that of manually optimized code.

We have implemented the system in the Berkeley UPC compiler and evaluated it on

over a dozen benchmarks exhibiting different communication styles. Performance porta-

bility is a major goal for our compiler project, and we have tested the framework on three

supercomputer clusters with different processor and network interconnect. Experimental

results reveal that our framework offers comparable performance to aggressive manual op-

timization, and can achieve significant speedup compared to the fine-grained and blocking

communication code that programmers find much easier to implement. Furthermore, the

compiler has been used to develop a large UPC application dominated by fine-grained

shared accesses, and our optimization framework is able to deliver a significant perfor-

mance speedup without any programmer assistance.

126

Bibliography

[1] A. Aiken and D. Gay. Barrier inference. In the 25th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL), pages 342–354, 1998.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incor-

porating long messages into the LogP model for parallel computation. Journal of

Parallel and Distributed Computing, 44(1):71–79, 1997.

[3] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele, and

S. Tobin-Hochstadt. The Fortress Language Specification, version 1.0 beta, 2006.

http://research.sun.com/projects/plrg/Publications/fortress1.0beta.pdf.

[4] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan

Kaufmann Publishers, 2002.

[5] S. Amarasinghe and M. S. Lam. Communicaton optimization and code generation

for distributed memory machines. In proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation(PLDI), June 1993.

[6] J. M. Anderson and M. S. Lam. Global optimizations for parallelism and locality on

scalable parallel machines. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993

127

conference on Programming language design and implementation, pages 112–125,

New York, NY, USA, 1993. ACM Press.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks. The

International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

[8] P. Banerjee, J. A. Chandy, M. Gupta, E. W. H. IV, J. G. Holm, A. Lain, D. J. Palermo,

S. Ramaswamy, and E. Su. The PARADIGM compiler for distributed-memory mul-

ticomputers. Computer, 28(10):37–47, 1995.

[9] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program

parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[10] C. Barton, C. Cascaval, G. Almasi, Y. Zheng, M. Farreras, S. Chatterje, and J. N.

Amaral. Shared memory programming for large scale machines. In PLDI ’06: Pro-

ceedings of the 2006 ACM SIGPLAN conference on Programming language design

and implementation, pages 108–117, New York, NY, USA, 2006. ACM Press.

[11] C. Bell, D. Bonachea, Y. Cote, J. Duell, P. Hargrove, P. Husbands, C. Iancu, M. Wel-

come, and K. Yelick. An evaluation of current high-performance networks. In the

17th International Parallel and Distributed Processing Symposium (IPDPS), 2003.

[12] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick. Optimizing bandwidth limited

problems using one-sided communication and overlap. In 20th International Paral-

lel and Distributed Processing Symposium (IPDPS), 2006.

128

[13] The Berkeley UPC Runtime Specification, 2003.

http://upc.lbl.gov/docs/system/upcr.pdf.

[14] K. Berlin, J. Huan, M. Jacob, et al. Evaluating the impact of programming lan-

guage features on the performance of parallel applications on cluster architectures.

In 16th International Workshop on Languages and Compilers for Parallel Process-

ing (LCPC), October 2003.

[15] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Petersen, L. Rauchwerger, and

P. Tu. Automatic detection of parallelism: A grand challenge for high-performance

computing. IEEE Parallel Distrib. Technol., 2(3):37–47, 1994.

[16] D. Bonachea. GASNet specification. Technical Report CSD-02-1207, University of

California, Berkeley, October 2002.

[17] D. Bonachea. Proposal for extending the UPC memory copy library functions and

supporting extensions to GASNet. Technical Report LBNL-56495, Lawrence Berke-

ley National Lab, October 2004.

[18] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. A compilation approach

for Fortran 90D/HPF compilers on distributed memory MIMD computers. In Pro-

ceedings of the Sixth Workshop on Languages and Compilers for Parallel Comput-

ing, Portland, OR, 1993.

[19] D. Callahan, B. Chamberlain, and H. Zima. The Cascade high-productivity lan-

guage. In 9th International Workshop on High-Level Parallel Programming Models

and Supportive Environments (HIPS 2004), pages 52–60, April 2004.

129

[20] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of

Munin. In Proc. of the 13th ACM Symp. on Operating Systems Principles (SOSP-

13), pages 152–164, 1991.

[21] S. Chakrabarti, M. Gupta, and J. Choi. Global communication analysis and opti-

mization. In SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI), pages 68–78, 1996.

[22] P. Charles, C. Donawa, K. Ebcioglu, et al. X10: An object-oriented approach to

non-unifrom cluster computing. In ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’05), October 2005.

[23] CHARM++ project web page. Available at http://charm.cs.uiuc.edu.

[24] D. Chavarria-Miranda and J. Mellor-Crummey. Effective communication coalesc-

ing for data parallel applications. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPOPP), June 2005.

[25] W. Chen, D. Bonachea, J. Duell, P. Husband, C. Iancu, and K. Yelick. A performance

analysis of the Berkeley UPC compiler. In Proceedings of the 17th International

Conference on Supercomputing (ICS), June 2003.

[26] W. Chen, A. Krishnamurthy, and K. Yelick. Polynomial-time algorithms for enforc-

ing sequential consistency in SPMD programs with arrays. In 16th International

Workshop on Language and Compilers for Parallel Processing, 2003.

[27] W.-Y. Chen. Building a source-to-source UPC-to-C translator. Master’s thesis, Uni-

versity of California at Berkeley, 2004.

130

[28] T. M. Chilimbi and M. Hirzel. Dynamic hot data stream prefetching for general-

purpose programs. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Confer-

ence on Programming language design and implementation, pages 199–209, New

York, NY, USA, 2002. ACM Press.

[29] F. C. Chow, S. Chan, R. Kennedy, S.-M. Liu, R. Lo, and P. Tu. A new algorithm

for partial redundancy elimination based on SSA form. In SIGPLAN Conference on

Programming Language Design and Implementation, pages 273–286, 1997.

[30] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective representation of

aliases and indirect memory operations in SSA form. In Computational Complexity,

pages 253–267, 1996.

[31] C. Coarfa, Y. Dotsenko, J. Eckhardt, and J. Mellor-Crummey. Co-Array Fortran per-

formance and potential: An NPB experimental study. In 16th International Work-

shop on Languages and Compilers for Parallel Processing (LCPC), October 2003.

[32] C. Coarfa, Y. Dotsenko, and J. Mellor-Crummey. A multi-platform Co-Array For-

tran compiler. In the 13th International Conference on Parallel Architecture and

Compilation Techniques (PACT 2004), 2004.

[33] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, et al. An evaluation of global ad-

dress space languages: Co-Array Fortran and Unified Parallel C. In ACM SIGPLAN

Symposium on Principles and Practices of Parallel Programming (PPoPP), pages

36–47, 2005.

[34] Compaq UPC version 2.0 for Tru64 UNIX. http://h30097.www3.hp.com/upc/.

131

[35] T. Cormen, C. Leiserson, and R. Rivset. Introduction to Algorithms. The MIT Press,

1994.

[36] Cray X1 system overview. http://www.cray.com/craydoc/20/manuals/S-2346-

23/html-S-2346-23/S-2346-23-toc.html.

[37] D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. Eicken, and

K. Yelick. Parallel programming in Split-C. In Supercomputing (SC1993), 1993.

[38] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a realistic model of parallel

computation. In Principles Practice of Parallel Programming, pages 1–12, 1993.

[39] A. Danalis, K. Kim, L. Pollock, and M. Swany. Transformations to parallel codes

for communication-computation overlap. In Supercomputing 2005, Nov 2005.

[40] K. Datta, D. Bonachea, and K. Yelick. Titanium performance and potential: an NPB

experimental study. In 18th International Workshop on Languages and Compilers

for Parallel Processing (LCPC), 2005.

[41] J. Duell. Allocating, initializing, and referring to static user data in the Berkeley

UPC compiler, 2002.

[42] J. Duell. Pthreads or processes: Which is better for implementing global address

space languages? Master’s thesis, University of California at Berkeley, 2007.

[43] T. El-Ghazawi and F. Cantonnet. UPC performance and potential: A NPB experi-

mental study. In Supercomputing2002 (SC2002), November 2002.

132

[44] A. Faraj and X. Yuan. Communication characteristics in the NAS parallel bench-

marks. In 14th IASTED International Conference on Parallel and Distributed Com-

puting and Systems (PDCS 2002), November 2002.

[45] A. Faraj and X. Yuan. Automatic generation and tuning of MPI collective com-

munication routines. In The 19th ACM International Conference on Supercomput-

ing(ICS), June 2005.

[46] A. Faraj, X. Yuan, and D. K. Lowenthal. STAR-MPI: self tuned adaptive routines

for MPI collective operations. In The 20th ACM International Conference on Super-

computing (ICS), June 2006.

[47] M. Gupta and P. Banerjee. PARADIGM: A compiler for automatic data distribution

on multicomputers. In International Conference on Supercomputing, pages 87–96,

1993.

[48] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.-Y. Wang, W.-M.

Ching, and T. Ngo. An HPF compiler for the IBM SP2. In Proceedings of the 1995

ACM/IEEE conference on Supercomputing (CDROM), page 71. ACM Press, 1995.

[49] M. H. Hall, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, and M. S. Lam. Detecting

coarse-grain parallelism using an interprocedural parallelizing compiler. In Super-

computing ’95: Proceedings of the 1995 ACM/IEEE conference on Supercomputing

(CDROM), page 49, New York, NY, USA, 1995. ACM Press.

[50] M. W. Hall, J.-A. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,

E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the SUIF

compiler. IEEE Computer, 29(12):84–89, 1996.

133

[51] P. Hilfinger et al. Titanium language reference manual. Technical Report CSD-01-

1163, University of California, Berkeley, November 2001.

[52] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD

distributed-memory machines. Communications of the ACM, 35(8):66–80, 1992.

[53] C.-H. Hsu, Y.-C. Chung, D.-L. Yang, and C.-R. Dow. A generalized processor map-

ping technique for array redistribution. IEEE Transactions on Parallel and Dis-

tributed Systems, 12(7):743–757, 2001.

[54] C. Iancu, P. Husbands, and W. Chen. Message strip mining heuristics for high speed

networks. In VECPAR 2004, June 2004.

[55] C. Iancu, P. Husbands, and P. Hargrove. HUNTing the overlap. In 14th International

Conference on Parallel Architectures and Compilation Techniques (PACT), 2005.

[56] C. Iancu and E. Strohmaier. Optimizing communication overlap for high-speed net-

works. In Proceedings of the ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP), March 2007.

[57] Intel compilers. http://www.intel.com/cd/software/products/asmo-

na/eng/compilers/284132.htm.

[58] L. Iftode and J. P. Singh. Shared virtual memory: Progress and challenges. Proc. of

the IEEE, Special Issue on Distributed Shared Memory, 87(3):498–507, 1999.

[59] A. Kamil, J. Su, and K. Yelick. Making sequential consistency practical in Titanium.

In Supercomputing 2005 (SC’05), November 2005.

134

[60] A. Kamil and K. Yelick. Concurrency analysis for parallel programs with textually

aligned barriers. In 18th International Workshop on Languages and Compilers for

Parallel Computing (LCPC), November 2005.

[61] M. Kandemir, P. Banerjee, A. Choudhary, J. Ramanujam, and N. Shenoy. A global

communication optimization technique based on data-flow analysis and linear alge-

bra. ACM Transactions on Programming Languages and Systems, 21(6):1251–1297,

1999.

[62] M. T. Kandemir, A. N. Choudhary, P. Banerjee, J. Ramanujam, and N. Shenoy. Min-

imizing data and synchronization costs in one-way communication. IEEE Transac-

tions on Parallel and Distributed Systems, 11(12):1232–1251, 2000.

[63] A. Karwande, X. Yuan, and D. Lowenthal. CCMPI: A compiled communication

capable MPI prototype for ethernet switched clusters. In ACM SIGPLAN Symposium

on Principles and Practices of Parallel Programming (PPoPP), June 2003.

[64] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Distributed

shared memory on standard workstations and operating systems. In Proceedings of

the Winter 94 Usenix Conference, 1994.

[65] K. Kennedy, N. Nedeljkovic, and A. Sethi. Efficient address generation for block-

cyclic distributions. In International Conference on Supercomputing, pages 180–

184, 1995.

[66] R. Kennedy, F. C. Chow, P. Dahl, S.-M. Liu, R. Lo, and M. Streich. Strength reduc-

tion via SSAPRE. In CC ’98: Proceedings of the 7th International Conference on

Compiler Construction, pages 144–158, London, UK, 1998. Springer-Verlag.

135

[67] A. Krishnamurthy and K. Yelick. Analyses and optimizations for shared address

space programs. Jorunal of Parallel and Distributed Computing, 1996.

[68] M. Lam. Software pipelining: an effective scheduling technique for VLIW ma-

chines. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Pro-

gramming Language design and Implementation, pages 318–328, New York, NY,

USA, 1988. ACM Press.

[69] J. Lee, S. Midkiff, and D. Padua. Concurrent static single assignment form and con-

stant propagation for explicitly parallel programs. In 10th International Workshop

on Languages and Compilere and Parallel Computing (LCPC), August 1997.

[70] J. Lee, P. Padua, and S. Midkiff. Basic compiler algorithms for parallel programs.

In 7th ACM SIGPLAN Symposium on Principles and Practices of Parallel Program-

ming (PPoPP), 1999.

[71] B. Liblit and A. Aiken. Type systems for distributed data structures. In the 27th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),

January 2000.

[72] B. Liblit, A. Aiken, and K. Yelick. Type systems for distributed data sharing. In

10th Annual International Static Analysis Symposium (SAS), June 2003.

[73] A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to max-

imize parallelism and minimize communication. In International Conference on

Supercomputing, pages 228–237, 1999.

[74] G. Liu and T. S. Abdelrahman. Computation-communication overlap on network-

136

of-workstation multiprocessors. In International Conference on Parallel and Dis-

tributed Processing Techniques and Applications, July 1998.

[75] R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Register promotion by sparse

partial redundancy elimination of loads and stores. In PLDI ’98: Proceedings of the

ACM SIGPLAN 1998 conference on Programming language design and implemen-

tation, pages 26–37, New York, NY, USA, 1998. ACM Press.

[76] C. Luk and T. Mowry. Compiler-based prefetching for recursive data structures. In

Architectural Support for Programming Languages and Operating Systems, pages

222–233, 1996.

[77] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. Mc-

Calpin, D. Bailey, and D. Takahashi. Introduction to the HPC challenge benchmark

suite, 2005. http://www.hpcchallenge.org/pubs/index.html.

[78] T. Mowry and A. Gupta. Tolerating latency through software-controlled prefetch-

ing in shared-memory multiprocessors. J. Parallel Distrib. Comput., 12(2):87–106,

1991.

[79] The Message Passing Interface (MPI) standard. http://www.mpi-forum.org/.

[80] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers, 1997.

[81] R. Netzer and B. Miller. What are race conditions? some issues and formalization.

ACM Letters on Programmming Languages and Systems, I(1), March 1992.

137

[82] J. Nieplocha, V. Tipparaju, and D. Panda. Protocols and strategies for optimizing

performance of remote memory operations on clusters. In Workshop on Communi-

cation Architecture for Clusters (CAC02) of IPDPS’02, 2002.

[83] R. Numwich and J. Reid. Co-Array Fortran for parallel programming. Technical

Report RAL-TR-1998-060, Rutherford Appleton Laboratory, 1998.

[84] Open64 compiler tools. http://open64.sourceforge.net.

[85] OpenMP application program interface, 2005. http://www.openmp.org/drupal/mp-

documents/spec25.pdf.

[86] Y. Paek, J. Hoeflinger, and D. Padua. Efficient and precise array access analysis.

ACM Trans. Program. Lang. Syst., 24(1):65–109, 2002.

[87] PathScale compiler suite. http://pathscale.com/ekopath.html.

[88] POSIX standard. http://www.opengroup.org/onlinepubs/009695399/.

[89] J. Prins, J. Huan, W. Pugh, et al. UPC implementation of an unbalanced tree search

benchmark. Technical Report 03-034, Department of Computer Science, University

of North Carolina, 2003.

[90] L. Prylli, B. Tourancheau, and R. Westrelin. Modeling of a high speed network to

maximize throughput performance: the experience of BIP over Myrinet. In Parallel

and Distributed Processing Techniques and Applications (PDPTA’98), 1998.

[91] L. Prylli, B. Tourancheau, and R. Westrelin. The design for a high-performance MPI

implementation on the Myrinet network. In PVM/MPI, pages 223–230, 1999.

138

[92] J. Savant and S. Seidel. MuPC: A run time system for Unified Parallel C. Tech-

nical Report CS-TR-02-03, Department of Computer Science, Michigan Techincal

University, September 2002.

[93] D. J. Scales, K. Gharachorloo, and C. A. Thekkath. Shasta: A low overhead,

software-only approach for supporting fine-grain shared memory. In Proc. of the 7th

Symp. on Architectural Support for Programming Languages and Operating Systems

(ASPLOSVII), pages 174–185, 1996.

[94] D. Shasha and M. Snir. Efficient and correct execution of parallel programs that

share memory. ACM Transactions on Programming Languages and Systems, April

1988.

[95] S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI collectives on clusters

of large scale SMPs. In Supercomputing 1999, Nov 1999.

[96] J. Sorensen and S. Baden. A data driven model for tolerating communication delays.

In Proceedings of the 12th SIAM Conference on Parallel Processing for Scientific

Computing, 2006.

[97] E. Su, A. Lain, S. Ramaswamy, D. J. Palermo, E. W. H. IV, and P. Banerjee. Ad-

vanced compilation techniques in the PARADIGM compiler for distributed-memory

multicomputers. In 9th ACM International Conference on Supercomputing, pages

424–433, July 1995.

[98] J. Su and K. Yelick. Array prefetching for irregular array accesses in Titanium. In

Sixth Annual Workshop on Java for Parallel and Distributed Computing, 2004.

139

[99] T. Suganuma, H. Komatsu, and T. Nakatani. Detection and global optimization of

reduction operations for distributed parallel machines. In ICS ’96: Proceedings of

the 10th international conference on Supercomputing, pages 18–25, New York, NY,

USA, 1996. ACM Press.

[100] The UPC Consortium. UPC language specifications, v1.2. Technical Report LBNL-

59208, Berkeley National Lab, 2005.

[101] Top 500 Supercomputer Sites. Top 500 list for June 2007. http://www.top500.org.

[102] C.-W. Tseng. Compiler optimizations for eliminating barrier synchronization. In 5th

ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming

(PPoPP), pages 144–155, 1995.

[103] S. Vadhiyar, G. Fagg, and J. Dongarra. Automatically tuned collective communica-

tions. In Supercomputing 2000, Nov 2000.

[104] S. P. Vanderwiel and D. J. Lilja. Data prefetch mechanisms. ACM Comput. Surv.,

32(2):174–199, 2000.

[105] A. Wakatani and M. Wolfe. Effectiveness of message strip-mining for regular and

irregular communication. In PDCS (Las Vegas), Oct 1994.

[106] A. Wakatani and M. Wolfe. A new approach to array redistribution: Strip mining

redistribution. In Proceedings of PARLE’94 (Athen, Greece), Jul 1994.

[107] WHIRL intermediate language specification. http://open64.sourceforge.net.

[108] M. Wolf, D. Maydan, and D. Chen. Combining loop transformations considering

140

caches and scheduling. In Proceedings of the 29th Annual IEEE/ACM International

Symposium (MICRO-29), December 1996.

[109] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:

Characterization and methodological considerations. In Proceedings of the 22nd In-

ternational Symposium on Computer Architecture (ISCA), pages 24–36, June 1995.

[110] XL C Enterprise Edition for AIX. http://www-

306.ibm.com/software/awdtools/caix/.

[111] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hil-

finger, S. Graham, D. Gay, P. Colella, and A. Aiken. Titanium: A high-performance

Java dialect. Concurrency: Practice and Experience, 10:825–836, 1998.

[112] Z. Zhang and S. Seidel. Benchmark measurements of current UPC platforms. In 4th

International Workshop on Performance Modeling, Evaluation, and Optimization of

Parallel and Distributed Systems, April 2005.

[113] Y. Zhu and L. Hendren. Locality analysis for parallel C programs. In Proceedings of

the 1997 International Conference on Parallel Architectures and Compilation Tech-

niques (PACT), 1997.

[114] Y. Zhu and L. J. Hendren. Communication optimizations for parallel C programs. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation(PLDI), pages 199–211, 1998.

141

	1 Introduction
	1.1 An Optimizations Framework for PGAS Programs
	1.2 Overview of the Optimizations

	2 Background
	2.1 Unified Parallel C
	2.2 The Berkeley UPC Compiler
	2.3 Translation Framework Overview
	2.4 Memory Consistency Models

	3 Experimental Setup
	4 Single-Node Performance
	4.1 Standard C Code Performance
	4.2 Performance of Pointer-to-shared Operations
	4.3 Optimizing UPC Forall Parallel Loop
	4.3.1 Affinity Test Removal
	4.3.2 Privatizing Shared Local Accesses in Forall Loops
	4.3.3 Experimental Results

	5 Optimizing Fine-grained Array Accesses
	5.1 Optimizing Regular Communication in Loops
	5.2 Practical Considerations for Message Strip-Mining
	5.3 An Empirical Study for Strip-mining
	5.3.1 Overall Benefit of Strip-mining
	5.3.2 Effects of Loop Computation Overhead
	5.3.3 Selecting the Strip Size
	5.3.4 Effects of Unrolling

	5.4 Implementation
	5.5 Experimental Results

	6 Optimizing Fine-grained Irregular Accesses
	6.1 Algorithm Overview
	6.2 Optimizing Shared Pointer Arithmetic
	6.3 Split-phase Communication for Reads
	6.4 Split-phase Communication for Writes
	6.5 Coalescing Communication Calls
	6.6 Example
	6.7 Experimental Results
	6.8 Application Study

	7 Optimizing Bulk Communication
	7.1 Design and Implementation
	7.1.1 Optimizing Puts
	7.1.2 Optimizing Gets
	7.1.3 Automatic Communication Aggregation

	7.2 Performance Analysis
	7.2.1 Buffering Overhead
	7.2.2 Communication-Related Overhead of Speculative Prefetch
	7.2.3 Effectiveness of Communication Aggregation

	7.3 Experimental Results
	7.4 Breakdown of Benchmark Performance

	8 Related Work
	8.1 Parallel Programming Models
	8.2 Optimizations for Parallel Programs
	8.2.1 Optimizing for Fine-grained Regular Accesses
	8.2.2 Optimizing for Fine-grained Irregular Accesses
	8.2.3 Optimizing Bulk Communication

	9 Conclusions
	Bibliography

