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Abstract. A model of computation (MoC) is a formal abstraction of execution 
in a computer. There is a need for composing diverse MoCs in e-science. 
Kepler, which is based on Ptolemy II, is a scientific workflow environment that 
allows for MoC composition. This paper explains how MoCs are combined in 
Kepler and Ptolemy II and analyzes which combinations of MoCs are currently 
possible and useful. It demonstrates the approach by combining MoCs 
involving dataflow and finite state machines. The resulting classification should 
be relevant to other workflow environments wishing to combine multiple 
MoCs. 

Keywords: Model of computation, scientific workflow, Kepler, Ptolemy II. 

1 The Need for Composing Models of Computation in E-science 
E-scientists design on-line (in silico) experiments by orchestrating components on the 
Web or Grid. On-line experiments are often orchestrated using a scientific workflow 
environment. Scientific workflow environments typically offer support for the design, 
sharing, reuse, enactment and provenance recording of computational experiments.  

Most workflow environments fix the model of computation (MoC, or the formal 
abstraction of computational execution) available to an e-scientist. They leave little 
flexibility to change MoC as the experiment evolves. Different experiments are 
modeled more cleanly with different MoCs because of their relative expressiveness 
and efficiency.  Different uses of MoCs for scientific workflows include dataflow for 
directed graph compositions, e.g. gene annotation pipelines; continuous-time ordinary 
differential equation solvers, e.g. for Lattice-Boltzmann simulations in fluid 
dynamics; and finite state machines for modeling sequential control logic, e.g. in 
clinical protocols or instrument interaction. 

There are also scenarios where a combination of MoCs is useful, e.g. a mixture of a 
time dependent differential equation model with dataflow. Most environments do not 
support experiments that mix multiple MoCs. This interferes with intra and inter-
disciplinary collaboration. For example, in genomic biology, gene annotation 
pipelines provide useful input to systems biology simulation models. Candidates for 
drug development found in cheminformatics simulations are plugged into 
bioinformatics annotation pipelines to retrieve the candidates’ hazardous interactions 
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within cells. The inability to mix MoCs also makes it more difficult to mix software 
workflows with physical systems such as sensor networks and electron microscopes, 
which have continuous dynamics. Moreover, mixing specialized MoCs for 
visualization (e.g. for animation) with, for example, time-based simulation, makes for 
more efficient execution and for better models. In addition, if we can mix MoCs, then 
we can introduce computational steering in workflows. Representative use cases 
include: (i) selective extraction and analysis of proteins from public databases, 
combining finite state machines and dataflow and (ii) dynamically adapting model 
control parameters of Lattice-Boltzmann simulations in fluid dynamics by combining 
finite state machines and continuous-time ODE solvers. In such scenarios, using an 
integrated environment that supports mixing MoCs enables integrated provenance 
collection. In the fluid dynamics example, the provenance includes dynamic changes 
in the overall model as well as parameter sweeps within each model, covering the full 
range and variability.  

2   Paper Contribution and Overview 
To date, little is known about how models of computation are joined. Kepler, which is 
based on Ptolemy II, is a scientific workflow environment that allows for MoC 
composition. The paper explains how MoCs are combined in Kepler and Ptolemy II, 
and analyzes which combinations of MoCs are possible and useful. It extends the 
work of [5] with a related work section, a discussion of additional directors, an 
analysis of the impact of time on director compatibility and a detailed example. The 
resulting classification should be relevant to other environments wishing to combine 
MoCs.  
     Kepler/Ptolemy II comes with a wide range of MoCs, which are implemented as 
directors. Section 3 introduces the notion of hierarchy as the key concept for mixing 
MoCs in a workflows. Section 4 provides an overview of MoCs in Kepler/Ptolemy II. 
For a scientific workflow developer, determining which MoC combinations are legal 
is non trivial. Section 5 establishes MoC compatibility, based on the notion of actor 
abstract semantics and presents a classification of MoCs combinations. Section 6 
discusses the validity of the approach and demonstrates successful and unsuccessful 
combinations of dataflow and finite state machines. We conclude in Section 7. 

3   Workflows and Hierarchy 
Ptolemy II [3] is a Java-based environment for heterogeneous modeling, simulation, 
and design of concurrent systems. Ptolemy II forms the core of Kepler [10], an 
environment for building scientific workflows. The focus of Ptolemy II is to build 
models based on the composition of processing components called actors [1]. Actors 
are encapsulations of parameterized actions performed on input tokens to produce 
output tokens. Inputs and outputs are communicated through ports within the actors. 
They provide the common abstraction used to wrap different types of software 
components, including sub-workflows, Web and Grid services. 

The interaction between the actors is defined by a Model of Computation. The 
MoC specifies the communication semantics among ports and the flow of control and 
data among actors. Directors are responsible for implementing particular MoCs, and 
thus define the “orchestration semantics” for workflows.  By selecting the director, 
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one selects the scheduling and execution semantics of a workflow. Many actors can 
work with several directors, adapting their behaviors to match the semantics of the 
director [10].  The models of computation implemented in Ptolemy as directors are 
described in detail in [3, Vol. 3]. A subset of them, including dataflow, time and event 
dependent directors, is available in Kepler. Key to mixing MoCs in a workflow is the 
notion of hierarchical abstraction. Figure 1 shows a Kepler chemistry workflow using 
the PN director, which implements a process networks MoC [14]. This workflow 
contains a composite actor (a.k.a. sub-workflow) named Babel. The implementation 
of Babel actor is another workflow that contains another director, the SDF director, 
which implements a synchronous dataflow MoC.  This example mixes two MoCs in a 
single, hierarchical workflow. 

 

  Fig. 1. A Kepler workflow from chemistry combining the PN and SDF director [14].  

In Ptolemy II/Kepler, hierarchy can serve either of two roles. First, it can be simply 
an organizational tool in building workflows, permitting a workflow designer to 
aggregate portions of a workflow and create conceptual abstractions. In this usage, the 
composite actor does not contain a director, and is called a transparent composite 
actor. The hierarchy has no semantic consequences; it is just a syntactic device. A 
second use of hierarchy is to use a workflow to define an actor. The Babel example is 
of this type. The fact that it has a director makes it function within the top level 
workflow exactly as if it were an atomic actor. A composite actor that contains a 
director is called an opaque composite actor, because its internal structure is neither 
visible nor relevant to the outside director.  

For an opaque composite actor to function externally as if it were an ordinary 
actor, the director must be able to execute the inside workflow in a manner that 
emulates an actor. We examine below what that means, but before we can do that, we 
explain a few of the MoCs in enough detail that they can serve as illustrative 
examples.  

4 Models of Computation in Ptolemy II and Kepler 
One of the main objectives of the Ptolemy Project has been the exploration of models 
of computation. For this reason, many distinct directors have been created by various 
researchers, some realizing fairly mature and well-understood models of computation, 
and some that are much more experimental. Kepler has adopted Ptolemy’s rich MoC 
architecture and focused principally on a few of the more mature ones, described here. 
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Process Networks (PN). In PN, each actor executes in a Java thread, and all actors 
execute concurrently. An actor can read input data encapsulated in tokens from input 
ports, and write data encapsulated in tokens to output ports. Normally, when it reads 
from an input port, the read blocks until an input token is available. Writes do not 
block. The PN director includes sophisticated scheduling policies to ensure that 
buffers for tokens remain bounded, and also detects deadlock, which is where all 
actors are blocked attempting to read data. See [7] and [13]. Most of the scientific 
workflows (composite actors) built with Kepler to date have been based on PN.  

Dataflow (DDF and SDF). In dataflow MoCs, instead of having a thread 
associated with each actor, the director “fires” actors when input tokens are available 
to them. We discuss two variants of dataflow here, dynamic dataflow (DDF) and 
synchronous dataflow (SDF). In the case of DDF, the director dynamically decides 
which actor to fire next, and hence constructs the firing schedule dynamically at run 
time. In the case of SDF, the director uses static information about the actor to 
construct a schedule of firings before the workflow is executed, and then repeatedly 
executes the schedule. SDF is very efficient in that very little decision making is made 
at run time. PN is semantically a superset of DDF, in that the repeated firings of an 
actor in DDF can be viewed as (or even implemented as) a thread. Every DDF 
workflow can be executed using a PN director. DDF in turn is a superset of SDF, in 
that every SDF workflow can be executed identically with a DDF director.  In SDF, a 
fixed number of tokens are consumed and produced in each firing.  The token 
consumption and production rates allow for the computation of a fixed schedule.  In 
SDF, deadlock and boundedness of communication buffers are decidable. As a 
consequence, SDF is well suited to code generation (the synthesis of a stand-alone 
program that executes independently of the workflow framework) [15]. With DDF, 
actors need not have a fixed token production or consumption rate, the schedule is 
determined at runtime. In DDF, deadlock and boundedness are not decidable.  In a 
DDF model, an actor has a set of firing rules (patterns) and the actor is fired if one of 
the firing rules forms a prefix of unconsumed tokens at the actor’s input ports. 

Continuous Time (CT). In CT, the communication between actors is 
(conceptually) via continuous-time signals (signals defined everywhere on a time 
line). The CT director includes a numerical solver for ordinary differential equations 
(ODEs). A typical actor used in CT is an Integrator, whose output is the integral from 
zero to the current time of the input signal. The CT director advances time in discrete 
steps that are small enough to ensure accurate approximations to “true” continuous-
time behavior.  

Discrete Events (DE). In DE, tokens communicated between actors are associated 
with a time stamp, a numerical value that is interpreted as the time at which the 
communication occurs. The DE director “fires” an actor when one or more of its input 
ports has the “oldest” (least time stamp) token among all the unconsumed tokens, or 
when the actor has requested a firing at a time stamp that is less than that of all 
unconsumed tokens and all other pending requests for firing. When the actor fires, it 
consumes the input tokens, if any, and possibly produces output tokens. It may also 
request of the director a firing at some future time stamp. 

Synchronous/Reactive (SR). In SR, every actor is (conceptually) fired on every 
“tick” of a global “clock.” On each firing, an actor may observe input values and 
assert output values, but in any tick, even if it is repeatedly fired, if the inputs remain 
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the same, then the asserted outputs should remain the same. The SR director fires all 
actors in every tick of the global clock repeatedly until all signals at all ports are 
defined. A signal is defined either if it has a token as its value or if it has been 
asserted to be “absent” (to have no token). 

Finite State Machines (FSM) and Modal Models. An FSM composite actor is 
very different from the above. The components in an FSM composite actor are not 
actors, but rather are states. The FSM director starts with an initial state. If that state 
has a refinement, then the FSM director “fires” that refinement. It then evaluates 
guards on all outgoing transitions, and if a guard evaluates to true, then it takes the 
transition, making the destination state of the transition the new current state. A state 
machine where the states have refinements is called a Modal Model. A Modal Model 
is an opaque composite actor containing an FSM, each state of which may contain an 
opaque composite actor. In a modal model, the refinement of the current state defines 
the current behavior of the state machine. The refinement of a state need not have the 
same type of director as the workflow containing the modal model. When FSM is 
combined hierarchically with CT, the resulting models are called hybrid systems. 

There are many other MoCs implemented in Ptolemy II, but the above set is 
sufficient to illustrate our key points. Akin to choosing between programming 
languages to tackle a problem, often different directors can be chosen to model a 
given phenomenon. A suitable director does not impose unnecessary constraints, and 
at the same time is constrained enough to result in useful derived properties (such as 
efficient execution or deadlock detection).  The misinformed use of directors also 
leads to actors that cannot be embedded in others, as explained in the next section. 

5 Composing Models of Computation in Kepler/Ptolemy II 
MoC composition is being explored in multiple scientific workflow systems. 
Examples other than Kepler [10] include Taverna and Inforsense. Taverna 2 allows 
computational steering of its data flows and within those data flows it uses FSM 
semantics to manage policies for individual services [12]. Inforsense too combine 
FSMs with dataflows [4]. Bar modal models however, MoC compositions have not 
been well treated in earlier research. Although prior work has offered formalisms for 
describing MoCs, e.g., [11, 6], and comparing them, e.g., [8], a study of MoC 
compositions is lacking. To address the void, we develop a classification of valid 
MoC combinations in Kepler/Ptolemy II.  

In the Kepler environment, opaque composite actors can be put into workflows 
with a different type of director, thereby combining different models of computation 
in one workflow. In the workflow in Figure 1, the Babel actor is part of a network of 
actors orchestrated by the PN director. The Babel actor internally uses an SDF 
director. In the example, SDF is nested inside PN, which is a valid combination, as we 
will explain below. Nesting PN inside of SDF would have been invalid in most cases. 
The choice of director determines whether a given actor can be put on the inside or 
outside of other actors. 

To determine which combinations are possible, we need to know two things about 
a director: 

1. What properties it assumes of the actors under its control, and 
2. What properties it exports via the opaque composite actor in which it is placed. 
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If a director’s exported properties match those assumed by another director, then it 
can be used within that other director. Otherwise, it cannot. In the example of Figure 
1, the SDF director exports properties that match those assumed by the PN director, 
and hence SDF can be used inside PN. The properties in question can be formulated 
in terms of actor abstract semantics and director abstractions of time. 

5.1 Actor Abstract Semantics 

All models of computation in Kepler and Ptolemy II share a common abstraction that 
we call the actor abstract semantics.  Actors and directors are instances of Java 
classes that implement the Executable interface, which defines action methods. The 
action methods include two distinct initialization methods: 

1. preinitialize(): invoked prior to any static analysis performed on the 
workflow (such as scheduling, type inference, checking for deadlock, etc.). 

2. initialize(): invoked to initialize an actor or director to its initial conditions. 
This is invoked after all static analysis has been performed, but it can also be 
invoked during execution to reinitialize an actor.  

The action methods also include three distinct execution methods that are invoked in 
sequence repeatedly during an execution of the workflow: 

3. prefire(): invoked to check whether an actor is ready to fire (for example, an 
actor may return false if there are not enough input data tokens).  

4. fire(): In this method, the actor should read input tokens from input ports and 
write tokens to output ports, but it should not change its state. That is, if the 
fire() method is invoked repeatedly with the same input tokens, then the 
resulting output tokens should be the same. 

5. postfire(): In this method, the actor can read input tokens and update its state. 
Finally, there is a finalization method: 

6. wrapup(): invoked for each actor just prior to finishing execution of a 
workflow. 

All of the methods are required to be finite (they must eventually return).  
The method definitions specify a contract, but not all actors obey this contract. Any 

actor that strictly conforms to this contract is said to be domain polymorphic, and the 
actor may be used by any director that operates on actors (which is all the directors 
above except FSM, which operates on states).  

Actors that do not obey the contract are more specialized, and may only work with 
specific directors. They are not domain polymorphic (strictly obeying the actor 
abstract semantics) and come in two flavors. The first flavor obeys a looser version of 
the abstract semantics where the fire() method provides no assurance that the state of 
the actor is unchanged.  The second is still looser in that it that also provides no 
assurance that any of these methods is finite. Based on these three levels of 
conformance to actor abstract semantics, we can now classify the directors. 

5.2 Abstract semantics assumed by a director of the actors under its control 

The PN director only assumes the loosest of these abstract semantics. It does not 
require that any method be finite because it invokes all of these methods, in order, in a 
thread that belongs entirely to the actor. If an actor chooses to run forever in the 
preinitialize() method, that does not create any problems for the director. The director 
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will let it run. Dataflow and DE1 directors require that actors conform with the loose 
actor semantics, where all methods are finite. But they do not require that actors leave 
the state unchanged in the fire() method. CT and SR require that actors obey the 
strictest form of the semantics. The director iteratively fires actors until some 
condition is satisfied. The strict actor semantics ensures that the answers will always 
be the same given the same inputs. FSM requires loose actor semantics. A firing of an 
FSM in Ptolemy II consists of a firing of the refinement of the current state (if there is 
one), followed by evaluation of the guards and a state transition. Clearly, the firing of 
the refinement must be finite for this to be useful. 

5.3 Abstract semantics exported by a director via the actor in which it is placed 

A director also implements the Executable interface. If a director conforms to the 
strict actor semantics, then an opaque composite actor containing that director also 
conforms to the contract. Such an actor can be used safely within any workflow. In 
the current version of Ptolemy II (version 6.0), only the SR director conforms to the 
strict actor semantics, although in principle CT and DE can be made to conform. 
Currently these and the dataflow directors conform to the looser abstract semantics, 
but still guarantee that all methods return after finite time. PN only conforms to the 
loosest version, providing no guarantees about methods ever returning. The FSM 
director exports whatever the state refinements export.  

5.4 Abstractions of time 

Some of the directors (notably CT and DE) explicitly manage a notion of the 
advancement of time. An actor, when it fires, can ask the director for “current time,” 
and actors can expect that time will advance monotonically between firings. Other 
directors (notably the dataflow directors and SR) are agnostic about time. They will 
pass requests for current time up the hierarchy to the next director above them. If they 
are at the top level, then by default, they do not advance time, and hence time does 
not progress beyond a starting point (typically 0.0). However, the SDF and SR 
directors have a parameter that can be used to increment time between iterations of 
the model, thus providing a model of discrete, regular advancement of time. Some 
directors (notably PN), have no notion of time and no notion of an iteration, and 
hence cannot meaningfully advance time. 

This model of time, along with the abstract semantics, imposes some constraints on 
the combinations of directors that can be used. Specifically, some directors require 
that time advances (CT and DE). These directors cannot be put inside a director that 
does not advance time (PN). 

                                                            
1 A variant of DE is described in [9] that requires and exports strict semantics, but that is not 

what is implemented in the current version of the software (version 6.0 of Ptolemy II). 
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5.5 Director compatibility  

We classify directors according to the following criteria: 
1. They require that the actors they control are strict, looser, or loosest, 

depending on whether they must conform to the strictest, looser, or loosest 
form of abstract semantics.  

2. They similarly export strict, looser, or loosest.  Ideally, any director should 
export the same version of the contract it assumes or a stricter version, but 
this is not the case in the current version of Ptolemy II.  

3. In addition, they either require time to advance, or do not require it. 
The current status of the directors is given in Table 1. The rules applied to 

determine director compatibility are: (i) exported abstract semantics should be stricter 
than or equal to required abstract semantics and (ii) a director that requires that time 
advances should only be put inside a director that advances time. The table is on-line 
and will evolve (see http://www.mygrid.org.uk/wiki/Papers/IccsPaper2007).  

 
Table 1. Rules for hierarchically mixing directors in Kepler and Ptolemy II 

 

Inner director ↓ 
(exports X)  

Outer director ↓ 
(requires Y)  

  PN SDF DDF CT DE SR FSM 
  (loosest) (loose) (loose) (strict) (loose) (strict) (loose) 
PN (loosest) Yes No No No No No No 
SDF (loose) Yes Yes Yes No Yes No Yes 
DDF (loose) Yes Yes Yes No Yes No Yes 
CT (loose) No Yes Yes No Yes Yes Yes 
DE (loose) No Yes Yes Yes Yes No Yes 
SR (strict) Yes Yes Yes Yes Yes Yes Yes 
FSM (refinement) Yes if the refinement is stricter than or equal to Y 

 

6 Composing PN, Dataflow and FSM Directors 
A key question may arise at this point. If actors can be made domain polymorphic 

by conforming to the strict actor semantics, then why not design all directors to 
conform? In some cases, the semantics of the MoC precludes this. In other cases, it 
would simply be too costly. We examine some of these cases. 

PN. The PN director is apparently the least restrictive in the actors it can manage, 
but also the least useful in an opaque composite actor. The reason for this is very 
fundamental. If the PN director were to define a finite fire() method, what should that 
method do? Each of the actors under its control is executing in its own thread of 
control. How much execution should be performed? One possible answer is “as little 
as possible,” but this would result in nondeterminate execution. If two actors have 
threads that are able to perform computation, which should be allowed to perform 
computation? The only other obvious answer is “as much as possible.” This can be 
made determinate, but typical PN workflows can execute forever if given the 
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opportunity. Hence, this yields an infinite execution. PN is sufficiently expressive that 
determining whether this execution is infinite is equivalent to solving the famous 
halting problem in computation, and hence is undecidable. This property of PN 
explains why it is challenging to introduce a model of time to PN. Specifically, timed 
variants of PN that have appeared in the literature allow time to advance when the 
model deadlocks. But whether the model deadlocks is undecidable, and typical 
models never deadlock. Thus, the loosest abstract semantics comes at a serious price, 
an inability to introduce a model of time. 

For example, the workflow of Figure 1 with PN on the outside would be hard to 
reuse inside others. It follows that, when a workflow has potential to be reused inside 
others, PN should be avoided and, if possible, replaced by a more reusable director. 
Moreover, models that require time to advance cannot be used within PN. 

DDF. DDF is as expressive as PN, and hence potentially suffers from the same 
limitation. However, DDF has an advantage. It assumes that all actors under its 
control have finite firings. Thus, it is relatively easy for the designer of a workflow to 
specify how many firings of the component actors constitute a single firing of the 
enclosing opaque composite actor. The DDF director assumes a simple default if 
these numbers are not given by the workflow designer: one firing of a DDF opaque 
composite actor constitutes at most one firing of each component actor. The actor is 
fired if possible, and not fired if not, given the available input data. This yields a 
simple, finite, and determinate notion of a finite firing for the director to export. This 
enables the introduction of a model of time. Time can advance between firings of the 
director. If the DDF director is used at the top level, the amount of the time advance 
would need to be given by a parameter. If it is inside a timed domain like DE, then the 
amount of the time advance can be specified by the environment. 

SDF. SDF is still simpler in that it is not as expressive as PN, and there is a simple 
unique finite firing that is natural and easy to define. However, for both DDF and 
SDF, it is difficult to define a fire() of an opaque composite actor that does not update 
the state of the workflow because data values stored on buffers change during the 
firing of the component actors. In order for SDF and DDF to export the strict actor 
semantics, they would have to backtrack or restore the state of these buffers on 
repeated invocations of the fire() method.  

FSM. A particularly interesting case is FSM and modal models. Modal models 
always use opaque composite actors as state refinements, and these must at a 
minimum have finite firings to be useful (given the semantics of an FSM in Ptolemy 
II discussed before). Hence, it does not make sense to use PN inside the refinement of 
a state. But any other of the directors described above can be used in a Modal Model.  

 
Figure 2 illustrates the differences with a small example that shows how DDF and 

modal models can be embedded in SDF.  The model starts with a Ramp actor that 
produces tokens starting at 0 and then increasing by 1. The signal is then distributed 
to a DDF opaque composite actor and to a modal model, both of which randomly 
change the gain of the signal.  The DDF portion uses conditional routing of the tokens 
to route each token through one of two actors that either multiplies the value by 1 or 
by -1.  In a similar fashion, the modal model has two refinements that either 
multiplies the value by 1 or by -1. The output is then plotted, see Figure 3.  The 
refinements of the modal model are SDF models. Thus, the modal model refinements 
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export SDF semantics and could be embedded inside PN if PN was at the top level. 
Swapping the DDF director with PN makes the workflow fail because PN cannot be 
used inside the outermost SDF.  The reason is that PN conforms to the loosest 
execution semantics and makes no guarantee about ever returning. This example is 
available on-line for exploration at the above mentioned Web site. 

 
Fig. 2. A simple example with DDF and FSM directors inside an SDF director. 
 

Fig 3.  The output of the model in figure 2. 

7 Composing SR, DE, and CT Directors 
SR and CT both require and export the strict actor semantics. DE has the potential to 
do so, although the current software implementation is looser. This fact creates an 
interesting suite of modeling capabilities for timed systems, that when combined with 
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FSM, is extremely useful. In particular, it is possible for SR, DE, CT, and FSM to be 
combined hierarchically in any order. More interestingly, as shown in [9], DE can be 
thought of as a generalization of SR, and CT as a generalization of DE. Each 
generalization adds expressiveness at the expense of efficiency. There are also subtle 
stylistic differences between these directors that make them all useful, despite being 
generalizations of one another. Details and examples are given in [9]. 

8 Conclusions  
There are scenarios in e-science that rely on composing models of composition. 

Based on the notion of hierarchy and actor abstract semantics, we give a classification 
of models of computation available in Kepler and Ptolemy II. The classification 
shows the compositions that are possible and useful. Notwithstanding several 
restrictions, many compositions are possible. Time-based simulations can be mixed 
with dataflow and finite state machines can be combined with almost anything. Our 
exploration of compositions of models of computation should be useful for other e-
science systems. 
 
Acknowledgments. Thanks to B. Ludaescher (UC Davis), T. Feng (UC Berkeley), G. 
Zhou (UC Berkeley), and J. Brooke (U Manchester). A. Goderis visited 
Kepler/Ptolemy based on the Link-Up grant EPSRC GR/ R67743. Brooks and Lee 
were supported in this work by the Center for Hybrid and Embedded Software 
Systems (CHESS) at UC Berkeley, which receives support from the National Science 
Foundation (NSF awards #CCR-0225610 and 0647591), the Air Force Research Lab 
(AFRL), the State of California Micro Program, and the following companies: 
Agilent, Bosch, DGIST, National Instruments, and Toyota. 

References 
1. G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, 
Cambridge, MA, 1986. 
2. S. Bowers, B. Ludaescher, A.H.H. Ngu, T. Critchlow “Enabling Scientific Workflow Reuse 
through Structured Composition of Dataflow and Control-Flow”In ''IEEE Workshop on 
Workflow and Data Flow for Scientific Applications'' (SciFlow), 2006. 
3. C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng (eds.)  ”Heterogeneous 
Concurrent Modeling and Design in Java”, Vol. 1-3, Tech. Report UCB/ERL M05/21, 
University of California, Berkeley. July 15, 2005 
4. V. Curcin, M. Ghanem, P. Wendel, and Y. Guo “Heterogeneous Workflows in Scientific 
Workflow Systems” Proc. of the 2nd Int. Workshop on Workflow Systems in e-Science (WSES 
07) in conjunction with the Int. Conference on Computational Science (ICCS) 2007, Beijing, 
China, May 27-30, 2007 
5. A. Goderis, C. Brooks, I. Altintas, E. A. Lee and C. Goble      “Composing Different Models 
of Computation in Kepler and Ptolemy II” Proc. of the 2nd Int. Workshop on Workflow 
Systems in e-Science (WSES 07) in conjunction with the Int. Conference on Computational 
Science (ICCS) 2007, Beijing, China, May 27-30, 2007 
6. C. Hardebolle and F. Boulanger “ModHel'X: A Component-Oriented Approach to Multi- 
Formalism Modeling” Proc. of the MODELS 2007 workshop on Multi- Paradigm Modeling, 
Nashville, Tennessee, USA, 2 October 2007 
7. G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,” 
Information Processing 77, B. Gilchrist, editor, North-Holland Publishing Co., 1977. 



 12

8. E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing Models of 
Computation,” IEEE Transactions on CAD, Vol. 17, No. 12, December 1998. 
9. E. A. Lee and H. Zheng, "Leveraging Synchronous Language Principles for Heterogeneous 
Modeling and Design of Embedded Systems," in EMSOFT Salzburg, Austria: ACM, October, 
2007. 
10. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y. 
Zhao, “Scientific Workflow Management and the KEPLER System,” Concurrency & 
Computation: Practice & Experience, Special issue on scientific workflows, 2005. 
11. F. Maraninchi and T. Bhouhadiba, "42: Programmable models of computation for a 
component-based approach to heterogeneous embedded systems," in 6th ACM International 
Conference on Generative Programming and Component Engineering (GPCE), Salzburg, 
Austria, 2007 
12. T. Oinn “Taverna 2 Workflow Specification”  
http://www.ebi.ac.uk/~tmo/docs/t2semantics.pdf   Last accessed 28 September 2007  
13. T. M. Parks, Bounded Scheduling of Process Networks, UCB/ERL-95-105, University of 
California, Berkeley, December 1995. 
14. W. Sudholt, I. Altintas, K.K. Baldridge, “A Scientific Workflow Infrastructure for 
Computational Chemistry on the Grid,” 1st Int. Workshop on Computational Chemistry and Its 
Application in e-Science in conjunction with ICCS 2006. 
15. G. Zhou, M.-K. Leung, and E. A. Lee, “A Code Generation Framework for Actor-Oriented 
Models with Partial Evaluation,” in Internation Conference on Embedded Software and 
Systems (ICESS), Daegu, Korea, 2007, Springer, LNCS 4523, pp. 786–799. 


