
Heterogeneous Composition of Models of
Computation

Antoon Goderis
Christopher Brooks
Ilkay Altintas
Edward A. Lee
Carol Goble

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2007-139

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-139.html

November 27, 2007

Copyright © 2007, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Thanks to B. Ludaescher (UC Davis), T. Feng (UC Berkeley), G. Zhou (UC
Berkeley), and J. Brooke (U Manchester). A. Goderis visited
Kepler/Ptolemy based on the Link-Up grant EPSRC GR/ R67743. Brooks
and Lee were supported in this work by the Center for Hybrid and
Embedded Software Systems (CHESS) at UC Berkeley, which receives
support from the National Science Foundation (NSF awards #CCR-
0225610 and 0647591), the Air Force Research Lab (AFRL), the State of
California Micro Program, and the following companies: Agilent, Bosch,
DGIST, National Instruments, and Toyota.

Heterogeneous Composition of Models of Computation

Antoon Goderis1 Christopher Brooks2 Ilkay Altintas3 Edward A. Lee4 Carole Goble5

1 School of Computer Science, University of Manchester, UK, goderisa@cs.man.ac.uk
2 Department of EECS, UC Berkeley, USA, cxh@eecs.berkeley.edu

3 San Diego Supercomputer Center, UC San Diego, USA, altintas@sdsc.edu
4 Department of EECS, UC Berkeley, USA, eal@eecs.berkeley.edu

5 School of Computer Science, University of Manchester, UK, carole@cs.man.ac.uk

Abstract. A model of computation (MoC) is a formal abstraction of execution
in a computer. There is a need for composing diverse MoCs in e-science.
Kepler, which is based on Ptolemy II, is a scientific workflow environment that
allows for MoC composition. This paper explains how MoCs are combined in
Kepler and Ptolemy II and analyzes which combinations of MoCs are currently
possible and useful. It demonstrates the approach by combining MoCs
involving dataflow and finite state machines. The resulting classification should
be relevant to other workflow environments wishing to combine multiple
MoCs.

Keywords: Model of computation, scientific workflow, Kepler, Ptolemy II.

1 The Need for Composing Models of Computation in E-science
E-scientists design on-line (in silico) experiments by orchestrating components on the
Web or Grid. On-line experiments are often orchestrated using a scientific workflow
environment. Scientific workflow environments typically offer support for the design,
sharing, reuse, enactment and provenance recording of computational experiments.

Most workflow environments fix the model of computation (MoC, or the formal
abstraction of computational execution) available to an e-scientist. They leave little
flexibility to change MoC as the experiment evolves. Different experiments are
modeled more cleanly with different MoCs because of their relative expressiveness
and efficiency. Different uses of MoCs for scientific workflows include dataflow for
directed graph compositions, e.g. gene annotation pipelines; continuous-time ordinary
differential equation solvers, e.g. for Lattice-Boltzmann simulations in fluid
dynamics; and finite state machines for modeling sequential control logic, e.g. in
clinical protocols or instrument interaction.

There are also scenarios where a combination of MoCs is useful, e.g. a mixture of a
time dependent differential equation model with dataflow. Most environments do not
support experiments that mix multiple MoCs. This interferes with intra and inter-
disciplinary collaboration. For example, in genomic biology, gene annotation
pipelines provide useful input to systems biology simulation models. Candidates for
drug development found in cheminformatics simulations are plugged into
bioinformatics annotation pipelines to retrieve the candidates’ hazardous interactions

 2

within cells. The inability to mix MoCs also makes it more difficult to mix software
workflows with physical systems such as sensor networks and electron microscopes,
which have continuous dynamics. Moreover, mixing specialized MoCs for
visualization (e.g. for animation) with, for example, time-based simulation, makes for
more efficient execution and for better models. In addition, if we can mix MoCs, then
we can introduce computational steering in workflows. Representative use cases
include: (i) selective extraction and analysis of proteins from public databases,
combining finite state machines and dataflow and (ii) dynamically adapting model
control parameters of Lattice-Boltzmann simulations in fluid dynamics by combining
finite state machines and continuous-time ODE solvers. In such scenarios, using an
integrated environment that supports mixing MoCs enables integrated provenance
collection. In the fluid dynamics example, the provenance includes dynamic changes
in the overall model as well as parameter sweeps within each model, covering the full
range and variability.

2 Paper Contribution and Overview
To date, little is known about how models of computation are joined. Kepler, which is
based on Ptolemy II, is a scientific workflow environment that allows for MoC
composition. The paper explains how MoCs are combined in Kepler and Ptolemy II,
and analyzes which combinations of MoCs are possible and useful. It extends the
work of [5] with a related work section, a discussion of additional directors, an
analysis of the impact of time on director compatibility and a detailed example. The
resulting classification should be relevant to other environments wishing to combine
MoCs.
 Kepler/Ptolemy II comes with a wide range of MoCs, which are implemented as
directors. Section 3 introduces the notion of hierarchy as the key concept for mixing
MoCs in a workflows. Section 4 provides an overview of MoCs in Kepler/Ptolemy II.
For a scientific workflow developer, determining which MoC combinations are legal
is non trivial. Section 5 establishes MoC compatibility, based on the notion of actor
abstract semantics and presents a classification of MoCs combinations. Section 6
discusses the validity of the approach and demonstrates successful and unsuccessful
combinations of dataflow and finite state machines. We conclude in Section 7.

3 Workflows and Hierarchy
Ptolemy II [3] is a Java-based environment for heterogeneous modeling, simulation,
and design of concurrent systems. Ptolemy II forms the core of Kepler [10], an
environment for building scientific workflows. The focus of Ptolemy II is to build
models based on the composition of processing components called actors [1]. Actors
are encapsulations of parameterized actions performed on input tokens to produce
output tokens. Inputs and outputs are communicated through ports within the actors.
They provide the common abstraction used to wrap different types of software
components, including sub-workflows, Web and Grid services.

The interaction between the actors is defined by a Model of Computation. The
MoC specifies the communication semantics among ports and the flow of control and
data among actors. Directors are responsible for implementing particular MoCs, and
thus define the “orchestration semantics” for workflows. By selecting the director,

 3

one selects the scheduling and execution semantics of a workflow. Many actors can
work with several directors, adapting their behaviors to match the semantics of the
director [10]. The models of computation implemented in Ptolemy as directors are
described in detail in [3, Vol. 3]. A subset of them, including dataflow, time and event
dependent directors, is available in Kepler. Key to mixing MoCs in a workflow is the
notion of hierarchical abstraction. Figure 1 shows a Kepler chemistry workflow using
the PN director, which implements a process networks MoC [14]. This workflow
contains a composite actor (a.k.a. sub-workflow) named Babel. The implementation
of Babel actor is another workflow that contains another director, the SDF director,
which implements a synchronous dataflow MoC. This example mixes two MoCs in a
single, hierarchical workflow.

 Fig. 1. A Kepler workflow from chemistry combining the PN and SDF director [14].

In Ptolemy II/Kepler, hierarchy can serve either of two roles. First, it can be simply
an organizational tool in building workflows, permitting a workflow designer to
aggregate portions of a workflow and create conceptual abstractions. In this usage, the
composite actor does not contain a director, and is called a transparent composite
actor. The hierarchy has no semantic consequences; it is just a syntactic device. A
second use of hierarchy is to use a workflow to define an actor. The Babel example is
of this type. The fact that it has a director makes it function within the top level
workflow exactly as if it were an atomic actor. A composite actor that contains a
director is called an opaque composite actor, because its internal structure is neither
visible nor relevant to the outside director.

For an opaque composite actor to function externally as if it were an ordinary
actor, the director must be able to execute the inside workflow in a manner that
emulates an actor. We examine below what that means, but before we can do that, we
explain a few of the MoCs in enough detail that they can serve as illustrative
examples.

4 Models of Computation in Ptolemy II and Kepler
One of the main objectives of the Ptolemy Project has been the exploration of models
of computation. For this reason, many distinct directors have been created by various
researchers, some realizing fairly mature and well-understood models of computation,
and some that are much more experimental. Kepler has adopted Ptolemy’s rich MoC
architecture and focused principally on a few of the more mature ones, described here.

 4

Process Networks (PN). In PN, each actor executes in a Java thread, and all actors
execute concurrently. An actor can read input data encapsulated in tokens from input
ports, and write data encapsulated in tokens to output ports. Normally, when it reads
from an input port, the read blocks until an input token is available. Writes do not
block. The PN director includes sophisticated scheduling policies to ensure that
buffers for tokens remain bounded, and also detects deadlock, which is where all
actors are blocked attempting to read data. See [7] and [13]. Most of the scientific
workflows (composite actors) built with Kepler to date have been based on PN.

Dataflow (DDF and SDF). In dataflow MoCs, instead of having a thread
associated with each actor, the director “fires” actors when input tokens are available
to them. We discuss two variants of dataflow here, dynamic dataflow (DDF) and
synchronous dataflow (SDF). In the case of DDF, the director dynamically decides
which actor to fire next, and hence constructs the firing schedule dynamically at run
time. In the case of SDF, the director uses static information about the actor to
construct a schedule of firings before the workflow is executed, and then repeatedly
executes the schedule. SDF is very efficient in that very little decision making is made
at run time. PN is semantically a superset of DDF, in that the repeated firings of an
actor in DDF can be viewed as (or even implemented as) a thread. Every DDF
workflow can be executed using a PN director. DDF in turn is a superset of SDF, in
that every SDF workflow can be executed identically with a DDF director. In SDF, a
fixed number of tokens are consumed and produced in each firing. The token
consumption and production rates allow for the computation of a fixed schedule. In
SDF, deadlock and boundedness of communication buffers are decidable. As a
consequence, SDF is well suited to code generation (the synthesis of a stand-alone
program that executes independently of the workflow framework) [15]. With DDF,
actors need not have a fixed token production or consumption rate, the schedule is
determined at runtime. In DDF, deadlock and boundedness are not decidable. In a
DDF model, an actor has a set of firing rules (patterns) and the actor is fired if one of
the firing rules forms a prefix of unconsumed tokens at the actor’s input ports.

Continuous Time (CT). In CT, the communication between actors is
(conceptually) via continuous-time signals (signals defined everywhere on a time
line). The CT director includes a numerical solver for ordinary differential equations
(ODEs). A typical actor used in CT is an Integrator, whose output is the integral from
zero to the current time of the input signal. The CT director advances time in discrete
steps that are small enough to ensure accurate approximations to “true” continuous-
time behavior.

Discrete Events (DE). In DE, tokens communicated between actors are associated
with a time stamp, a numerical value that is interpreted as the time at which the
communication occurs. The DE director “fires” an actor when one or more of its input
ports has the “oldest” (least time stamp) token among all the unconsumed tokens, or
when the actor has requested a firing at a time stamp that is less than that of all
unconsumed tokens and all other pending requests for firing. When the actor fires, it
consumes the input tokens, if any, and possibly produces output tokens. It may also
request of the director a firing at some future time stamp.

Synchronous/Reactive (SR). In SR, every actor is (conceptually) fired on every
“tick” of a global “clock.” On each firing, an actor may observe input values and
assert output values, but in any tick, even if it is repeatedly fired, if the inputs remain

 5

the same, then the asserted outputs should remain the same. The SR director fires all
actors in every tick of the global clock repeatedly until all signals at all ports are
defined. A signal is defined either if it has a token as its value or if it has been
asserted to be “absent” (to have no token).

Finite State Machines (FSM) and Modal Models. An FSM composite actor is
very different from the above. The components in an FSM composite actor are not
actors, but rather are states. The FSM director starts with an initial state. If that state
has a refinement, then the FSM director “fires” that refinement. It then evaluates
guards on all outgoing transitions, and if a guard evaluates to true, then it takes the
transition, making the destination state of the transition the new current state. A state
machine where the states have refinements is called a Modal Model. A Modal Model
is an opaque composite actor containing an FSM, each state of which may contain an
opaque composite actor. In a modal model, the refinement of the current state defines
the current behavior of the state machine. The refinement of a state need not have the
same type of director as the workflow containing the modal model. When FSM is
combined hierarchically with CT, the resulting models are called hybrid systems.

There are many other MoCs implemented in Ptolemy II, but the above set is
sufficient to illustrate our key points. Akin to choosing between programming
languages to tackle a problem, often different directors can be chosen to model a
given phenomenon. A suitable director does not impose unnecessary constraints, and
at the same time is constrained enough to result in useful derived properties (such as
efficient execution or deadlock detection). The misinformed use of directors also
leads to actors that cannot be embedded in others, as explained in the next section.

5 Composing Models of Computation in Kepler/Ptolemy II
MoC composition is being explored in multiple scientific workflow systems.
Examples other than Kepler [10] include Taverna and Inforsense. Taverna 2 allows
computational steering of its data flows and within those data flows it uses FSM
semantics to manage policies for individual services [12]. Inforsense too combine
FSMs with dataflows [4]. Bar modal models however, MoC compositions have not
been well treated in earlier research. Although prior work has offered formalisms for
describing MoCs, e.g., [11, 6], and comparing them, e.g., [8], a study of MoC
compositions is lacking. To address the void, we develop a classification of valid
MoC combinations in Kepler/Ptolemy II.

In the Kepler environment, opaque composite actors can be put into workflows
with a different type of director, thereby combining different models of computation
in one workflow. In the workflow in Figure 1, the Babel actor is part of a network of
actors orchestrated by the PN director. The Babel actor internally uses an SDF
director. In the example, SDF is nested inside PN, which is a valid combination, as we
will explain below. Nesting PN inside of SDF would have been invalid in most cases.
The choice of director determines whether a given actor can be put on the inside or
outside of other actors.

To determine which combinations are possible, we need to know two things about
a director:

1. What properties it assumes of the actors under its control, and
2. What properties it exports via the opaque composite actor in which it is placed.

 6

If a director’s exported properties match those assumed by another director, then it
can be used within that other director. Otherwise, it cannot. In the example of Figure
1, the SDF director exports properties that match those assumed by the PN director,
and hence SDF can be used inside PN. The properties in question can be formulated
in terms of actor abstract semantics and director abstractions of time.

5.1 Actor Abstract Semantics

All models of computation in Kepler and Ptolemy II share a common abstraction that
we call the actor abstract semantics. Actors and directors are instances of Java
classes that implement the Executable interface, which defines action methods. The
action methods include two distinct initialization methods:

1. preinitialize(): invoked prior to any static analysis performed on the
workflow (such as scheduling, type inference, checking for deadlock, etc.).

2. initialize(): invoked to initialize an actor or director to its initial conditions.
This is invoked after all static analysis has been performed, but it can also be
invoked during execution to reinitialize an actor.

The action methods also include three distinct execution methods that are invoked in
sequence repeatedly during an execution of the workflow:

3. prefire(): invoked to check whether an actor is ready to fire (for example, an
actor may return false if there are not enough input data tokens).

4. fire(): In this method, the actor should read input tokens from input ports and
write tokens to output ports, but it should not change its state. That is, if the
fire() method is invoked repeatedly with the same input tokens, then the
resulting output tokens should be the same.

5. postfire(): In this method, the actor can read input tokens and update its state.
Finally, there is a finalization method:

6. wrapup(): invoked for each actor just prior to finishing execution of a
workflow.

All of the methods are required to be finite (they must eventually return).
The method definitions specify a contract, but not all actors obey this contract. Any

actor that strictly conforms to this contract is said to be domain polymorphic, and the
actor may be used by any director that operates on actors (which is all the directors
above except FSM, which operates on states).

Actors that do not obey the contract are more specialized, and may only work with
specific directors. They are not domain polymorphic (strictly obeying the actor
abstract semantics) and come in two flavors. The first flavor obeys a looser version of
the abstract semantics where the fire() method provides no assurance that the state of
the actor is unchanged. The second is still looser in that it that also provides no
assurance that any of these methods is finite. Based on these three levels of
conformance to actor abstract semantics, we can now classify the directors.

5.2 Abstract semantics assumed by a director of the actors under its control

The PN director only assumes the loosest of these abstract semantics. It does not
require that any method be finite because it invokes all of these methods, in order, in a
thread that belongs entirely to the actor. If an actor chooses to run forever in the
preinitialize() method, that does not create any problems for the director. The director

 7

will let it run. Dataflow and DE1 directors require that actors conform with the loose
actor semantics, where all methods are finite. But they do not require that actors leave
the state unchanged in the fire() method. CT and SR require that actors obey the
strictest form of the semantics. The director iteratively fires actors until some
condition is satisfied. The strict actor semantics ensures that the answers will always
be the same given the same inputs. FSM requires loose actor semantics. A firing of an
FSM in Ptolemy II consists of a firing of the refinement of the current state (if there is
one), followed by evaluation of the guards and a state transition. Clearly, the firing of
the refinement must be finite for this to be useful.

5.3 Abstract semantics exported by a director via the actor in which it is placed

A director also implements the Executable interface. If a director conforms to the
strict actor semantics, then an opaque composite actor containing that director also
conforms to the contract. Such an actor can be used safely within any workflow. In
the current version of Ptolemy II (version 6.0), only the SR director conforms to the
strict actor semantics, although in principle CT and DE can be made to conform.
Currently these and the dataflow directors conform to the looser abstract semantics,
but still guarantee that all methods return after finite time. PN only conforms to the
loosest version, providing no guarantees about methods ever returning. The FSM
director exports whatever the state refinements export.

5.4 Abstractions of time

Some of the directors (notably CT and DE) explicitly manage a notion of the
advancement of time. An actor, when it fires, can ask the director for “current time,”
and actors can expect that time will advance monotonically between firings. Other
directors (notably the dataflow directors and SR) are agnostic about time. They will
pass requests for current time up the hierarchy to the next director above them. If they
are at the top level, then by default, they do not advance time, and hence time does
not progress beyond a starting point (typically 0.0). However, the SDF and SR
directors have a parameter that can be used to increment time between iterations of
the model, thus providing a model of discrete, regular advancement of time. Some
directors (notably PN), have no notion of time and no notion of an iteration, and
hence cannot meaningfully advance time.

This model of time, along with the abstract semantics, imposes some constraints on
the combinations of directors that can be used. Specifically, some directors require
that time advances (CT and DE). These directors cannot be put inside a director that
does not advance time (PN).

1 A variant of DE is described in [9] that requires and exports strict semantics, but that is not

what is implemented in the current version of the software (version 6.0 of Ptolemy II).

 8

5.5 Director compatibility

We classify directors according to the following criteria:
1. They require that the actors they control are strict, looser, or loosest,

depending on whether they must conform to the strictest, looser, or loosest
form of abstract semantics.

2. They similarly export strict, looser, or loosest. Ideally, any director should
export the same version of the contract it assumes or a stricter version, but
this is not the case in the current version of Ptolemy II.

3. In addition, they either require time to advance, or do not require it.
The current status of the directors is given in Table 1. The rules applied to

determine director compatibility are: (i) exported abstract semantics should be stricter
than or equal to required abstract semantics and (ii) a director that requires that time
advances should only be put inside a director that advances time. The table is on-line
and will evolve (see http://www.mygrid.org.uk/wiki/Papers/IccsPaper2007).

Table 1. Rules for hierarchically mixing directors in Kepler and Ptolemy II

Inner director ↓
(exports X)

Outer director ↓
(requires Y)

 PN SDF DDF CT DE SR FSM
 (loosest) (loose) (loose) (strict) (loose) (strict) (loose)
PN (loosest) Yes No No No No No No
SDF (loose) Yes Yes Yes No Yes No Yes
DDF (loose) Yes Yes Yes No Yes No Yes
CT (loose) No Yes Yes No Yes Yes Yes
DE (loose) No Yes Yes Yes Yes No Yes
SR (strict) Yes Yes Yes Yes Yes Yes Yes
FSM (refinement) Yes if the refinement is stricter than or equal to Y

6 Composing PN, Dataflow and FSM Directors
A key question may arise at this point. If actors can be made domain polymorphic

by conforming to the strict actor semantics, then why not design all directors to
conform? In some cases, the semantics of the MoC precludes this. In other cases, it
would simply be too costly. We examine some of these cases.

PN. The PN director is apparently the least restrictive in the actors it can manage,
but also the least useful in an opaque composite actor. The reason for this is very
fundamental. If the PN director were to define a finite fire() method, what should that
method do? Each of the actors under its control is executing in its own thread of
control. How much execution should be performed? One possible answer is “as little
as possible,” but this would result in nondeterminate execution. If two actors have
threads that are able to perform computation, which should be allowed to perform
computation? The only other obvious answer is “as much as possible.” This can be
made determinate, but typical PN workflows can execute forever if given the

 9

opportunity. Hence, this yields an infinite execution. PN is sufficiently expressive that
determining whether this execution is infinite is equivalent to solving the famous
halting problem in computation, and hence is undecidable. This property of PN
explains why it is challenging to introduce a model of time to PN. Specifically, timed
variants of PN that have appeared in the literature allow time to advance when the
model deadlocks. But whether the model deadlocks is undecidable, and typical
models never deadlock. Thus, the loosest abstract semantics comes at a serious price,
an inability to introduce a model of time.

For example, the workflow of Figure 1 with PN on the outside would be hard to
reuse inside others. It follows that, when a workflow has potential to be reused inside
others, PN should be avoided and, if possible, replaced by a more reusable director.
Moreover, models that require time to advance cannot be used within PN.

DDF. DDF is as expressive as PN, and hence potentially suffers from the same
limitation. However, DDF has an advantage. It assumes that all actors under its
control have finite firings. Thus, it is relatively easy for the designer of a workflow to
specify how many firings of the component actors constitute a single firing of the
enclosing opaque composite actor. The DDF director assumes a simple default if
these numbers are not given by the workflow designer: one firing of a DDF opaque
composite actor constitutes at most one firing of each component actor. The actor is
fired if possible, and not fired if not, given the available input data. This yields a
simple, finite, and determinate notion of a finite firing for the director to export. This
enables the introduction of a model of time. Time can advance between firings of the
director. If the DDF director is used at the top level, the amount of the time advance
would need to be given by a parameter. If it is inside a timed domain like DE, then the
amount of the time advance can be specified by the environment.

SDF. SDF is still simpler in that it is not as expressive as PN, and there is a simple
unique finite firing that is natural and easy to define. However, for both DDF and
SDF, it is difficult to define a fire() of an opaque composite actor that does not update
the state of the workflow because data values stored on buffers change during the
firing of the component actors. In order for SDF and DDF to export the strict actor
semantics, they would have to backtrack or restore the state of these buffers on
repeated invocations of the fire() method.

FSM. A particularly interesting case is FSM and modal models. Modal models
always use opaque composite actors as state refinements, and these must at a
minimum have finite firings to be useful (given the semantics of an FSM in Ptolemy
II discussed before). Hence, it does not make sense to use PN inside the refinement of
a state. But any other of the directors described above can be used in a Modal Model.

Figure 2 illustrates the differences with a small example that shows how DDF and

modal models can be embedded in SDF. The model starts with a Ramp actor that
produces tokens starting at 0 and then increasing by 1. The signal is then distributed
to a DDF opaque composite actor and to a modal model, both of which randomly
change the gain of the signal. The DDF portion uses conditional routing of the tokens
to route each token through one of two actors that either multiplies the value by 1 or
by -1. In a similar fashion, the modal model has two refinements that either
multiplies the value by 1 or by -1. The output is then plotted, see Figure 3. The
refinements of the modal model are SDF models. Thus, the modal model refinements

 10

export SDF semantics and could be embedded inside PN if PN was at the top level.
Swapping the DDF director with PN makes the workflow fail because PN cannot be
used inside the outermost SDF. The reason is that PN conforms to the loosest
execution semantics and makes no guarantee about ever returning. This example is
available on-line for exploration at the above mentioned Web site.

Fig. 2. A simple example with DDF and FSM directors inside an SDF director.

Fig 3. The output of the model in figure 2.

7 Composing SR, DE, and CT Directors
SR and CT both require and export the strict actor semantics. DE has the potential to
do so, although the current software implementation is looser. This fact creates an
interesting suite of modeling capabilities for timed systems, that when combined with

 11

FSM, is extremely useful. In particular, it is possible for SR, DE, CT, and FSM to be
combined hierarchically in any order. More interestingly, as shown in [9], DE can be
thought of as a generalization of SR, and CT as a generalization of DE. Each
generalization adds expressiveness at the expense of efficiency. There are also subtle
stylistic differences between these directors that make them all useful, despite being
generalizations of one another. Details and examples are given in [9].

8 Conclusions
There are scenarios in e-science that rely on composing models of composition.

Based on the notion of hierarchy and actor abstract semantics, we give a classification
of models of computation available in Kepler and Ptolemy II. The classification
shows the compositions that are possible and useful. Notwithstanding several
restrictions, many compositions are possible. Time-based simulations can be mixed
with dataflow and finite state machines can be combined with almost anything. Our
exploration of compositions of models of computation should be useful for other e-
science systems.

Acknowledgments. Thanks to B. Ludaescher (UC Davis), T. Feng (UC Berkeley), G.
Zhou (UC Berkeley), and J. Brooke (U Manchester). A. Goderis visited
Kepler/Ptolemy based on the Link-Up grant EPSRC GR/ R67743. Brooks and Lee
were supported in this work by the Center for Hybrid and Embedded Software
Systems (CHESS) at UC Berkeley, which receives support from the National Science
Foundation (NSF awards #CCR-0225610 and 0647591), the Air Force Research Lab
(AFRL), the State of California Micro Program, and the following companies:
Agilent, Bosch, DGIST, National Instruments, and Toyota.

References
1. G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press,
Cambridge, MA, 1986.
2. S. Bowers, B. Ludaescher, A.H.H. Ngu, T. Critchlow “Enabling Scientific Workflow Reuse
through Structured Composition of Dataflow and Control-Flow”In ''IEEE Workshop on
Workflow and Data Flow for Scientific Applications'' (SciFlow), 2006.
3. C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, H. Zheng (eds.) ”Heterogeneous
Concurrent Modeling and Design in Java”, Vol. 1-3, Tech. Report UCB/ERL M05/21,
University of California, Berkeley. July 15, 2005
4. V. Curcin, M. Ghanem, P. Wendel, and Y. Guo “Heterogeneous Workflows in Scientific
Workflow Systems” Proc. of the 2nd Int. Workshop on Workflow Systems in e-Science (WSES
07) in conjunction with the Int. Conference on Computational Science (ICCS) 2007, Beijing,
China, May 27-30, 2007
5. A. Goderis, C. Brooks, I. Altintas, E. A. Lee and C. Goble “Composing Different Models
of Computation in Kepler and Ptolemy II” Proc. of the 2nd Int. Workshop on Workflow
Systems in e-Science (WSES 07) in conjunction with the Int. Conference on Computational
Science (ICCS) 2007, Beijing, China, May 27-30, 2007
6. C. Hardebolle and F. Boulanger “ModHel'X: A Component-Oriented Approach to Multi-
Formalism Modeling” Proc. of the MODELS 2007 workshop on Multi- Paradigm Modeling,
Nashville, Tennessee, USA, 2 October 2007
7. G. Kahn and D. B. MacQueen, “Coroutines and Networks of Parallel Processes,”
Information Processing 77, B. Gilchrist, editor, North-Holland Publishing Co., 1977.

 12

8. E. A. Lee and A. Sangiovanni-Vincentelli, “A Framework for Comparing Models of
Computation,” IEEE Transactions on CAD, Vol. 17, No. 12, December 1998.
9. E. A. Lee and H. Zheng, "Leveraging Synchronous Language Principles for Heterogeneous
Modeling and Design of Embedded Systems," in EMSOFT Salzburg, Austria: ACM, October,
2007.
10. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y.
Zhao, “Scientific Workflow Management and the KEPLER System,” Concurrency &
Computation: Practice & Experience, Special issue on scientific workflows, 2005.
11. F. Maraninchi and T. Bhouhadiba, "42: Programmable models of computation for a
component-based approach to heterogeneous embedded systems," in 6th ACM International
Conference on Generative Programming and Component Engineering (GPCE), Salzburg,
Austria, 2007
12. T. Oinn “Taverna 2 Workflow Specification”
http://www.ebi.ac.uk/~tmo/docs/t2semantics.pdf Last accessed 28 September 2007
13. T. M. Parks, Bounded Scheduling of Process Networks, UCB/ERL-95-105, University of
California, Berkeley, December 1995.
14. W. Sudholt, I. Altintas, K.K. Baldridge, “A Scientific Workflow Infrastructure for
Computational Chemistry on the Grid,” 1st Int. Workshop on Computational Chemistry and Its
Application in e-Science in conjunction with ICCS 2006.
15. G. Zhou, M.-K. Leung, and E. A. Lee, “A Code Generation Framework for Actor-Oriented
Models with Partial Evaluation,” in Internation Conference on Embedded Software and
Systems (ICESS), Daegu, Korea, 2007, Springer, LNCS 4523, pp. 786–799.

